Definition of Tracking

 Tracking:
Tr aCk| ng — Generate some conclusions about the motion of
the scene, objects, or the camera, given a
sequence of images.
— Knowing this maotion, predict wherethingsare
going to project in the next image, so that we
don’t have so much work looking for them.

_ Why Track? Tracking a Silhouette by
" Detection and Measuring Edge Positions

recognition are expensive
. [fwe g et anideaof « Observations are positions of edges alongnormalsto tracked contour
where an object isin -’T_ <
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New
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Why not Wait and Process the

Set of Images as a Batch? Implicit Assumptions of

« Inacar system, detecting and tracking Tracking
pedestriansin real timeisimportant. « Physical cameras do not moveinstantly
* Recursive methods require less computing from aviewpoint to another
* Object do not teleport between places
aroundthescene

* Relative position between cameraand scene
changesincrementally

¢ \We can modd motion




Related Fields

« Signa Detection and Estimation
* Radar technology

Necessary Models

« We use models to describe a priori knowledge about
« theworld (including external parameters of camera)
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Recursive Least Square Estimation

* Wedon't want to wait until
all data have been collected
to get an estimate 4 of the

Meggurement

depth

* Wedon't want to reprocess Slalevaf.ab}
old datawhen we make a
new measurement

+ Recursive method: dataat [~~~ ~"" Tty
step i areobtainedfrom a [~=—-
dataat stepi- 1

The Problem: Signal Estimation

* Wehaveasystem with parameters
— Scene structure, camera motion, automatic zoom
— System state is unknown (“hidden”)
* We have measurements
— Components of stable “feature points’ in the
images.
— “Observations’, projections of the state.
* Wewant to recover the state componentsfrom
the observations

A Simple Example of Estimation
by Least Square Method

+ God: Find edimate Aof statea
such that theleast square
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Recursive Least Square Estimation 2
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Recursive Least Square Estimation 3

Gain

Actual Predicted
measure measure
> L+ ( a_,)
Estim:
stimate at step i Innovation

Gain specifies how much
do we pay attention

to the difference

between what we expected
and what we actually get

L east Square Estimation of the
State Vector of a Static System

1. Batch method £49 sl
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2. Recursive method X, H,
Calculation issimilar to calculation of running average
Wehad: § =5, +i—(X - &)

Now we find: a
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Recursive Least Square
Estimation for a Dynamic System
(Kaman F|IteT)

State equanon weak factor for model
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Estimation when System Model
is Nonlinear
tended Kalman Filter)
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<) A —

a'i i i
K, =P H(H,P,H,+ R 0
Differences compared to
Pi = 1 i1 regular Kalman filter are
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Tracking Steps
* Predict next state as F ,, , using
previous step and dynamic model
« Predict regions N(H.F .a_,,P )
of next measurements using
measurement model and

uncertainties o
. Prediction
» Make new measurementsx; In region|
praji cted regi ons M easurement—{

Recursive Least Square Estimation for
aDynamic System (Kaman Filter)

State vector a; R
Estimation @ t

Tracking as a Probabilistic
Inference Problem

* Finddistributionsfor state vector a and for
measurement vector x,. Then weare ableto
compute the expectations & and X;

» Simplifying assumptions (same asfor HMM)

P@ala.a,.a,)=P@ala,)

(Only immediate past matters)

P(Xivxj ~~~~~ |a1'):P(Xi|ai)P(Xj|ai)"'P(Xk|ai)

(Conditional independence of
measurements given a state)

Tracking as Inference

¢ Prediction

P(a X0+, = (P(a la,)P(a. vX1,---,X|_1)da1_1
» Correction

P(a1 |X11"'1Xi ) =— P(Xi |a|)P(a| le’ ""Xi-l)
dD(X| |a|)P(a| |X1’. . ’Xl-l)d81
Produces same results as | east square approach if
distributions are Gaussans: Kaman filter
See Forsyth and Ponce, Ch. 19

Kaman Filter for 1D Signals

* Measurement vector components:

« State vector components:

State equation Tweak factor for model
a'i - I * Vvi—l Vvl ~N (01
M easurement equation urement noise
X = Y/ v~ N( (Mfel?s

, Prediction for x;

- A Standard deviation for
.= .+
P P.*q prediction error

pi-l = (1- Ki-l h) p'i_§t.d. for estimation error

 |Isthere enough equations?

Applications: Structure from Motion

— Coordinates of corners, “salient
points”

— Camera motion parameters

— Scene structure

i

— N corners, 2N measurements

— N unknown state components from structure

(distances from first center of projection to « Batch methods

3D points) * Recursive methods
— 6 unknown state components from motion (Kalman filter)

(trandlation and rotation)

— More measurements than unknowns for every
frameif N>6 (2N >N + 6)




Problems with Tracking

* Initia detection
— If itistoo dow we will never catch up
— If itisfast, why not do detection at every frame?
» Evenif raw detection can be donein real time, tracking

saves processing cycles compared to raw detection.
The CPU has other thingsto do.

 Detectionisneeded again if you losetracking
» Mostvisiontracking prototypesuseinitia
detection done by hand
(see Forsyth and Ponce for discussion)
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