
Principal Components Analysis
MLE, EM and MAP

CMSC 828D
Fundamentals of Computer Vision

Fall 2000



Outline
• Lagrange Multipliers  
• Principal Components Analysis
• Review of parameter estimation.
• Notation and Problem Definition
• Maximum Likelihood Estimation
• Difficulties
• Bayesian view
• Maximum A Posteriori Estimation
• Algorithms: Expectation Maximization



Lagrange Multipliers
• Find stationary points of a function f(x) subject to one or 

more constraints g(x) =0
• Consider the surface g(x)=0

– The direction of increase of f is ∇f 
– However moving this direction may take us away from the 

constraint surface
– Idea: move along component of ∇f along the surface.
– Denote this component as ∇g f
– At the extremum point this function will be stationary

∇g f=0
– How to get ∇g f ?
– Take ∇f and subtract from it that part a which takes it out of 

the surface g
∇g f = ∇f – a



Finding the component of ∇f along g
• Now let us move by a distance δ along the 

surface g
– g(x+δδδδ)=g(x)+ (δδδδ .∇g)
– But this still lies on the surface -- so g(x+δδδδ)=0
– So δδδδ .∇g=0  
– ⇒ ∇g is perpendicular to motions along the surface 

• But we wanted to remove any piece of ∇f that 
was perpendicular to  g(x)=0 

• This will be a vector of the form 
∇g f =∇f + λ∇g

(For some λ)



Lagrangian
• Consider  the Lagrangian function

L(x, λ) = f + λg
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• So this gives us both the constraint equation and 
the way to optimize the function on the surface.



Principal Components Analysis



Key technique in dealing with data
• Data Reduction

– Experimental measurements produce lots of data
– Scientists postulate lots of hypotheses as to what factors affect data. Create 

overly complex models
– Goal: find factors that affect data most and create small models

• Knowledge discovery
– Collect lots of data
– Are there patterns hidden in the collected data that can help us develop a model 

and understanding?
– Can we use this understanding to classify a new piece of data?

• Applications: Almost all computer vision
– Especially face recognition, tracking, pattern recognition… etc.



Basics
• Record data
• d dimensional data vector  x
• Record N observations
• Mean 
• Covariance 
• Problem: d can be very large

– “megapixel camera” d>1 million 
(values of the intensity at the pixels)

– Image is a point in a d dimensional space

• Need a way to capture the information in the data 
but using very few “coordinates”
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• Consider a vector x that lies in a d dimensional linear space.
• Let vectors uk, k=1,…, d  define a basis in the space

x=Σ ck uk
x is characterized by d coordinates {ck}
Different xi have different coordinates {ck}i

• Now consider a case that the vectors x lie on
a lower dimensional manifold
– Smaller number of coordinates enough
– For small d, if points are spread along the 

axes it may be easy to recognize the basis

Principal Components Analysis

– For larger d and if points are not along 
axes it is harder

– Need mathematical tools



Dimension Reduction
• Expressing the points using the basis vectors along the 

axes, we still need all the coordinates to describe the xi
• However if we had an alternate basis we need only two 

variables and a constant to describe the points.
• Complexity of most algorithms is a 

power of d
• Mathematical questions to answer:

• Best Basis: How to find out the
basis that is best lined up 
with the data?

• Approximation question: If we only 
wanted the best k dimensional basis
how do we select it?

• How do we account for noise?
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Approximation
• Given a dataset {xi} with N members
• Write each vector in a basis {uk}
• Coefficients 
• Approximate each xi as sum of a variable part and a 

constant part and
• Dimension of variable part is M
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• Error in approximting a particular vector
( )

1 1 1 1 1

M d M d d
i i i i i

i k k k k k k k k k k k
k k M k k M k M

c b c b c b
= = + = = + = +

= − − = − − = −∑ ∑ ∑ ∑ ∑ε x u u x u u u

• Define sum of squares error function C
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Getting the parameters bk and uk
• Evaluate bk by setting ∂C/ ∂bk=0
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• To get best basis vectors uk define cost function

• Minimize E with respect to uk

• However the expression is homogeneous in uk

• Obvious solution is uk =0



Finding the best basis
• To avoid the trivial solution we need a constraint
• Basis vectors have unit magnitude ||uk||=1, uj . uk=δjk
• How do we optimize subject to constraints?

– Lagrange Multipliers!
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• Minimizing with respect to uk
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• U is an orthonormal vector with columns as basis vectors
• So any set of Us and Ms that satisfy t =U ΣU M



PCA
• Choose the simplest solution

– U vectors in the eigenbasis of ΣΣΣΣ
– M is the diagonal matrix of eigenvalues.

• Algorithm
1. Compute the mean of the data

x- = (!ixi)/N
2. Compute the covariance of the data,

ΣΣΣΣ = !i(xi – x- ) (xi – x- )’

3. Compute eigenvectors, ui and corresponding eigenvalues "i of ΣΣΣΣ
sorted according to the magnitude of "i

4. For a desired approximation dimension M, xi can be written as
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Selecting the approximation dimension M?
• The proportion of variance in the data captured when we 

truncate at a given M is

•Two strategies:

• 1st: Specify the desired threshold e.g. 99%

• 2nd: Look at the magnitudes of "i / "i+1

•In some problems it will exhibit  a sharp value 
at some value of i

•“Intrinsic dimension” of the problem
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Application: Face/fingerprint recognition
• 128 faces at 64x64 resolution 

for training
– d = 4096
– Perform PCA choosing 1st 20 

modes (16 shown beside)
– Approximate new faces using 

these
– Greater than 95% accuracy 

claimed on a database of 7000 faces
• Also used for fingerprint storage and 

recognition
• If interested check 

http://c3iwww.epfl.ch/projects_activities/jm
v/fingerprint_identification.html



Pedestrian shapes from PCA modes
• Problem: track moving pedestrians from a moving 

camera.
• Solution: generate PCA modes (“eigenvectors”) 

from Pedestrian shapes
• Track pedestrian shapes in new images by 

searching for variations in PCA modes



Movie

• From Philomin et al 2000



Summary

Principal Components Analysis (PCA) 
exploits the redundancy in multivariate 
data. Allows one to:

• Determine (relationships) in the 
variables

• Reduce the dimensionality of the data 
set without a significant loss of 
information



Parameter Estimation
MLE and MAP



Problem Introduction
• Model characterized by values of a parameter vector θθθθ
• Have several observations of a process that we think 

follows this model
• Using this observation set as “training data” we want to 

find the most probable values of the parameters
• Observations have errors and are assumed to follow a 

probability distribution
• Two Approaches:

– Maximum Likelihood Estimation (MLE)
• Expectation Maximization Algorithm

– Maximum A Priori Estimation (MAP)
• “Bayesian approach”

• Talk will only touch on a vast field, but hopefully will 
make you familiar with the jargon.



Notation
• parameter vector being estimated θθθθ
• a test value to be compared
• E.g., if N(µ, σ) 1-D normal distribution 
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•Parameters to be estimated µ, σ

•d dimensional data with mean µµµµ and covariance matrix ΣΣΣΣ
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•Parameters to be estimated µµµµ and ΣΣΣΣ
•Data set on which the estimation is based !



Maximum Likelihood Estimation
• Use a set of N data points xi belonging to a training set !, 

and assumed to be drawn independently from the 
probability density p(x|θθθθ) to estimate θθθθ

• Because observations are independent ( )
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• Likelihood of θθθθ with respect to the samples in !, is p(!|θθθθ)
• probability that the set of observations in the dataset 

would have occurred, given the parameters θθθθ
• Maximum likelihood estimate, θθθθ^ is the value of θθθθ that 

maximizes this probability.
• Estimation problem: treat p(!|θθθθ) as a function of θθθθ and find 

value that maximizes it.



Log Likelihood Function
• Probabilities are positive.
• Logarithm is a monotonic increasing 

function
• So, maxima of the likelihood function 

will occur at the same values as its 
logarithm

• Easier to work with
– Converts products to sums
– Shrinks big numbers and small 

numbers to O(1)
– Easier to differentiate resulting cost 

function
• Denoted l(θθθθ)

( ) ( ) ( )
1

ln | ln |
N

k
k

l p p xθ θ θ
=

= = ∑!

( )

( ) ( )
1

ˆ arg max

ln | ln | 0
N

k
k

l

p p x

θ

θ θ

θ θ

θ θ
=

=

∇ = ∇ =∑!

Estimate can be a local minimum or a global minimum



Maximum Likelihood Estimation

• Summary
– Given a dataset whose elements are assumed to be 

distributed according to a probability distribution p(x|θθθθ)
– Create the likelihood function for the data set that 

shows the probability that the data set could have come 
out of the assumed probability distribution with given 
parameters θθθθ.

– If observations in the dataset are independent the 
likelihood function is 

– Using the log of the likelihood function is often more 
convenient.

– Parameter estimated by maximizing the likelihood or 
the log with respect to θθθθ
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Expectation Maximization
• Algorithm for approximate maximum likelihood parameter 

estimation when features are missing
• Situation:  

– Given a set of N data points xi belonging to a training set ∆
– Data is d dimensional 
– Some of the data points is missing features, or has poorly measurec values
– Good data point xg ={x1, x2,…, xN} 
– Bad data point xb ={x1, x2,…,xk,…, xN}

• Separate features into a good set !g and a bad set !b

• Using a guess θθθθ , fix some of the parameters, and form a likelihood 
function over the unknown features

( ) ( ); ln , ; | ;i i
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Maximize Q with respect to the unfixed values. 
Fix the found values
Repeat for the previously fixed values



•Sometimes we prefer to 
apply the EM, even 
when there are no 
missing features 

•Q may be simpler to 
optimize

•Get an approx. MLE 
solution



Maximum A Posteriori Estimation
• In MLE the estimated value of the parameter vector θθθθ^ is not taken to 

be a random variable.
• This is against the philosophy of “Bayesian” methods
• Everything is random
• We have an estimate of a “prior” probability
• We make a measurement
• Based on this measurement we convert/update the prior probability 

to a “posterior” one.
• Thus we are given a prior probability for the parameters, p(θθθθ)
• In MAP methods instead of maximizing l(θθθθ) we maximize l(θθθθ)p(θθθθ)
• In this context MLE can be viewed as finding the most likely values 

of θθθθ , assuming all values are equally likely



MAP methods

• Goal: knowing a priori estimate p(θθθθ ) compute the 
posterior estimate p(θθθθ |!) 



Sources
• Christopher Bishop, “Neural Networks for Pattern 

Recognition”, Clarendon Press, 1995.
• R.O. Duda, Hart (and D. Stork), 1973 (new edition 

expected in 2000.)
– A classic, but a bit heavy

• Numerical Recipes
– For general discussion of MLE

• The web


