Motion and Flow II

Structure from Motion

$$
\begin{array}{r}
\mathbf{u}=\mathbf{u}_{\mathrm{tr}}+\mathbf{u}_{\mathrm{rot}} \\
\mathbf{u}_{\mathrm{tr}}=\frac{1}{Z}(\hat{\mathbf{z}} \times(\mathbf{t} \times \mathbf{r})) \\
\mathbf{u}_{\mathrm{rot}}=\frac{1}{F}\left(\hat{\mathbf{z}} \times\left(\mathbf{r} \times\left([?]_{\times} \mathbf{r}\right)\right)\right)
\end{array}
$$

Passive Navigation and Structure

The system moves with a rigid motion with translational velocity $\mathbf{t}=(U, V, W)^{T}$ and rotational velocity $\omega=(\alpha, \beta, \gamma)^{T}$.
Scene points $\mathbf{R}=(X, Y, Z)^{T}$ project ontoimage points $\mathbf{r}=(x, y, f)$
and the 3 D velocity $\dot{\mathbf{R}}=(U, V, W)$ of a scene point is observed in the image as velocity $\dot{\mathbf{r}}=(u, v .0)$.

Image Flow due to Rigid Motion

The velocity of a point with respect to the $X Y Z$ coordinate system is $\dot{\mathbf{R}}=-\mathbf{t}-\omega \times \mathbf{R}$
$\dot{X}=-U-B Z+\gamma Y$
$\dot{Y}=-V-\gamma X+\alpha Z$
$\dot{Z}=-W-\alpha X+\beta X$
Let $f=1$, then $x=\frac{X}{Z} \quad y=\frac{Y}{Z} ; \quad u=\dot{x} \quad v=\dot{y}$
$u=\left(\frac{\dot{X}}{Z}\right)=\frac{\dot{X}}{Z}-\frac{X \dot{Z}}{Z^{2}}=\left(-\frac{U}{Z}-\beta+\gamma y\right)-x\left(-\frac{W}{Z}-\alpha y+\beta x\right)$
$v=\left(\frac{\dot{Y}}{Z}\right)=\frac{\dot{Y}}{Z}-\frac{Y \dot{Z}}{Z^{2}}=\left(-\frac{V}{Z}-\gamma x+\alpha\right)-y\left(-\frac{W}{Z}-\alpha y+\beta x\right)$
$u=\frac{-U+x W}{Z}+\alpha x y-\beta\left(x^{2}+1\right)+\gamma y=\frac{u_{\mathrm{tr}}}{Z}+u_{\mathrm{rot}}$
$v=\frac{-V+y W}{Z}+\alpha\left(y^{2}+1\right)-\beta x y-\gamma x=\frac{v_{\text {tr }}}{Z}+v_{\text {rot }}$
in vector notation $: \mathbf{r}=\frac{1}{\mathbf{R} \cdot \mathbf{z}_{0}} \mathbf{R}$, where $Z=\mathbf{R} \cdot \mathbf{z}_{0}$
$\dot{\mathbf{r}}=\frac{1}{\mathbf{R} \cdot \mathbf{z}_{0}}\left(\mathbf{z}_{0} \times(\mathbf{t} \times \mathbf{r})\right)+\mathbf{z}_{0} \times(\mathbf{r} \times(\omega \times \mathbf{r}))$

Scaling ambiguity: We can compute the translation only up to a scale factor ($K \mathbf{t}, K Z$) give the same flow as (\mathbf{t}, Z).

Translational flow field

Rotational flow field

$\frac{\mathbf{u}_{\mathrm{tr}}}{Z}=\left(\left(x-x_{0}\right) \frac{W}{Z},\left(y-y_{0}\right) \frac{W}{Z}\right)$
where $\left(x_{0}, y_{0}\right)=\left(\frac{U}{W} \cdot f, \frac{V}{W} \cdot f\right)$ is the focus of expansion (FOE)
or focus of contraction (FOC).
$\left(\frac{\alpha}{\gamma} f, \frac{\beta}{\gamma} f\right)$ is the point where the rotation axis pierces the image plane(AOR).

Classical Structure from Motion

- Established approach is the epipolar minimization: The "derotated flow" should be parallel to the translational flow.

Uniqueness

Let there be two translations $\mathbf{t}_{1}, \mathbf{t}_{2}$ and two surfaces Z_{1}, Z_{2}

$$
\begin{array}{cc}
\mathbf{t}_{1}=\left(U_{1}, V_{1}, W_{1}\right) & \mathbf{t}_{2}=\left(U_{2}, V_{2}, W_{2}\right) \\
u=\frac{-U_{1}+x W_{1}}{Z_{1}} & v=\frac{-V_{1}+y W_{1}}{Z_{1}} \\
u=\frac{-U_{2}+x W_{2}}{Z} & v=\frac{-V_{2}+y W_{2}}{Z} \\
\frac{-U_{1}+x W_{1}}{-V_{1}+y W_{1}} & = \\
\left(-U_{1}+x W_{1}\right)\left(-V_{2}+y W_{2}\right)= & \frac{-U_{2}+x W_{2}}{-V_{2}+y W_{2}} \\
U_{1} V_{2}-x V_{2} W_{1}-y U_{1} W_{2}+x y W_{1} W_{2} & =U_{2} V_{1}-x V_{1} W_{2}-y U_{2} W_{1}+x y W_{2} W_{1}
\end{array}
$$

must hold for all x and y

$$
\begin{array}{cl}
U_{1} V_{2} & =U_{2} V_{1} \\
V_{2} W_{1} & =V_{1} W_{2} \\
U_{1} W_{2} & =U_{2} W_{1}
\end{array} \quad U_{1}: V_{1}: W_{1}=U_{2}: V_{2}: W_{2} \rightarrow \mathbf{t}_{2}=k \mathbf{t}_{1} \text { and } Z_{2}=k Z_{1}
$$

A translational flow field determines the motions of the camera uniquely up to a scaling factor.

The Translational Case

A least squares formulation
$\iint\left(u-\frac{x W-U}{Z}\right)^{2}+\left(v-\frac{y W-V}{Z}\right)^{2} d x d y \rightarrow \min$
Substitute $a=-U+x W \quad b=-V+y W$
$\iint\left(u-\frac{a}{Z}\right)^{2}+\left(v-\frac{b}{Z}\right)^{2} \rightarrow \min$

Step 1:Minimize with respect to Z. (Find the length of \mathbf{u}_{tr} for which d would be minimized.)

$$
\left(u-\frac{a}{Z}\right) \frac{a}{Z^{2}}+\left(v-\frac{b}{Z}\right) \frac{b}{Z^{2}}=0 \quad Z=\frac{a^{2}+b^{2}}{u a+v b}
$$

Substitute back
$\iint \frac{(u b-v a)^{2}}{a^{2}+b^{2}} d x d y \rightarrow \min$

Step 2: Differentiate with respect to U, V, W, set expression to zero.
Let $K=\frac{(u b-v a)(u a+v b)}{\left(a^{2}+b^{2}\right)^{2}}$

$$
\begin{aligned}
\mathrm{I} \iint(-V+y W) K d x d y & =0 \\
\text { II } \iint(-U+x W) K d x d y & =0 \\
\text { III } \iint(-y U+x V) K d x d y & =0
\end{aligned}
$$

3 linearly dependent equations $(U \cdot \mathrm{I}+V \cdot \mathrm{II}+W \cdot \mathrm{III}=0)$

The Rotational Case

$$
\begin{gathered}
\iint\left(u-u_{\mathrm{rot}}\right)^{2}+\left(v-v_{\mathrm{rot}}\right)^{2} \rightarrow \min \\
u-\alpha x y+\beta\left(x^{2}+1\right)-\gamma y=0 \\
v-\alpha\left(y^{2}+1\right)+\beta x y+\gamma x=0 \\
\left(\begin{array}{ccc}
x y & -\left(x^{2}+1\right) & y \\
\left(y^{2}+1\right) & -x y & -x
\end{array}\right)\left(\begin{array}{l}
\alpha \\
\beta \\
\gamma
\end{array}\right)=\binom{u}{v}
\end{gathered}
$$

In matrix form

$$
\begin{aligned}
& A \cdot \omega=\mathbf{u} \\
& \omega=\left(A^{T} A\right)^{-1} A^{T} \mathbf{u}
\end{aligned}
$$

The General Case

Minimization of epipolar distance

$$
\iint\left(\binom{u-u_{\mathrm{rot}}}{v-v_{\mathrm{rot}}} \cdot\binom{-v_{\mathrm{tr}}}{u_{\mathrm{tr}}}\right)^{2} d x d y \rightarrow \min
$$

or, in vector notation

$$
\int((\mathbf{t} \times \mathbf{r})(\dot{\mathbf{r}}-\omega \times \mathbf{r}))^{2} d \mathbf{r} \rightarrow \min
$$

Motion Estimation Techniques

- Linearization (Tsai Huang 1984, Longuet-Higgins 1981) in the discrete case

$$
\mathbf{x}^{\prime} E \mathbf{x}=0, \text { where } E=T_{\times} \mathbf{R}
$$

$$
\mathbf{x}^{\prime} E \mathbf{x}=\mathbf{a}^{T} e
$$

$$
\text { with } a=\left(x^{\prime} x, x^{\prime} y, x^{\prime}, y^{\prime} x, y^{\prime} y, y^{\prime}, x, y, 1\right)
$$

1. LS minimization $\sum\left(a_{i}^{T} e\right)^{2} \rightarrow \min$ solve for E.
2. Obtain from E translation and rotation using SVD.

- Prazdny (1981), Burger Bhanu (1990), Nelson Aloimonos (1988), Heeger Jepson (1992): Decomposition of flow field into translational and rotational components. Translational flow field has a certain structure: All vectors are emanating from a point. Either search in the space of rotations or the space of translational directions.
- Longuet-Higgins Prazdny (1980), Waxman (1987): Parametric model for local surface patches \boxtimes solve locally for motion parameters and structure

Optical flow difficulties

- The aperture problem

Translational Normal Flow

$$
\mathbf{u}_{n}=\frac{\mathbf{u}_{\mathrm{tr}}}{Z} \cdot \mathbf{n}
$$

- In the case of translation each normal flow vector constrains the location of the FOE to a half-plane.
- Intersection of half-planes provides FOE.

Egoestimation from normal flow

- patterns defined on the sign of normal flow along particular orientation fields
- positive depth constraint
- 2 classes of orientation fields: copoint vectors and coaxis vectors

Copoint vector fields

Copoint ve ctors : $\mathbf{v}_{c p}\left(\mathbf{t}_{i}\right)$ perpendicular to translational flow field defined by \mathbf{t}_{i} $\mathbf{v}_{\mathrm{cp}}\left(\mathbf{t}_{i}\right)=\hat{\mathbf{z}} \times \mathbf{u}_{\mathrm{tr}}\left(\mathbf{t}_{i}\right)=\hat{\mathbf{z}} \times\left(\hat{\mathbf{z}} \times\left(\mathbf{t}_{i} \times \mathbf{r}\right)\right)$
The components of flow along $\mathbf{v}_{\mathrm{cp}}\left(\mathbf{t}_{i}\right)$ amount to

$$
\dot{\mathbf{r}} \cdot \frac{\mathbf{v}_{\mathrm{cp}}}{\left\|\mathbf{v}_{\mathrm{cp}}\right\|}=\frac{1}{\left\|\mathbf{v}_{\mathrm{cp}}\right\|}\left(\frac{1}{Z}\left(\mathbf{t} \times \mathbf{t}_{i}\right) \cdot \mathbf{r}+(\omega \times \mathbf{r}) \cdot\left(\mathbf{t}_{i} \times \mathbf{r}\right)\right)
$$

Thus the translational component is separated by a line $\quad\left(\mathbf{t} \times \mathbf{t}_{i}\right) \cdot \mathbf{r}=0$ into positive and negative values

The rotational component is separated by a second-order curve $(\omega \times \mathbf{r}) \cdot\left(\mathbf{t}_{i} \times \mathbf{r}\right)=0$ into positive and negative values
Pattern with positive areas, negative areas, and some undefined areas

copoint vectors

translational component

rotational component

Coaxis vector fields

Coaxis vectors: $\mathbf{v}_{\mathrm{ca}}\left(\omega_{?}\right)$ perpendicular to rotation

$$
\mathbf{v}_{\mathrm{ca}}\left(\omega_{z}\right)=\hat{\mathbf{z}}_{\times \mathbf{u}_{\mathrm{rot}}}\left(\omega_{z}\right)=\hat{\mathbf{z}} \times\left(\times \mathbf{r} \times\left(\omega_{?} \times \mathbf{r}\right)\right)
$$

The componentsof flow along $\mathbf{v}_{\mathrm{ca}}\left(\omega_{i}\right)$ amount to

$$
\dot{\mathbf{r}} \cdot \frac{\mathbf{v}_{\mathrm{ca}}}{\left\|\mathbf{v}_{\mathrm{ca}}\right\|}=\frac{1}{\left\|\mathbf{v}_{\mathrm{ca}}\right\|}\left(\left(\omega \times \omega_{i}\right) \cdot \mathbf{r}+\frac{1}{Z}(\mathbf{t} \times \mathbf{r}) \cdot\left(\omega_{i} \times \mathbf{r}\right)\right)
$$

Thus the translational component is separated by a second-order curve $(\mathbf{t} \times \mathbf{r}) \cdot\left(\omega_{?} \times \mathbf{r}\right)=0$
and the rotational component is separated by a line $\left(\omega \times \omega_{?}\right) \cdot \mathbf{r}=0$

Intersection of patterns provides the FOE.

Three coaxis vector fields

(a)

(b)

(c)

(α)

(β)

(γ)

Depth variability constraint

- Errors in motion estimates lead to distortion of the scene estimates.
- The distortion is such that the correct motion gives the "smoothest" (least varying) scene structure.

Depth estimation

- Scene depth can be estimated from normal flow measurements:

$$
\begin{gathered}
u_{\mathrm{n}}=\mathbf{u} \cdot \mathbf{n}=\frac{1}{Z} \mathbf{u}_{\mathrm{tr}} \cdot \mathbf{n}+\mathbf{u}_{\mathrm{rot}} \cdot \mathbf{n} \\
\frac{1}{\hat{Z}}=\frac{u_{\mathrm{n}}-\mathbf{u}_{\mathrm{rot}}(\hat{?}) \cdot \mathbf{n}}{\mathbf{u}_{\mathrm{tr}}(\hat{\mathbf{t}}) \cdot \mathbf{n}}
\end{gathered}
$$

Visual Space Distortion

$$
\hat{Z}=Z \cdot D, \quad D=\frac{\mathbf{u}_{\mathbf{u}}(\hat{\mathbf{t}}) \cdot \mathbf{n}}{\left.\left[\mathbf{u}_{\mathbf{t}}(\mathbf{t})-\mathbf{u}_{\mathrm{rot}}(\mathrm{~d})\right)\right] \cdot \mathbf{n}}
$$

- Wrong 3D motion gives rise to a rugged (unsmooth) depth function (surface).
- The correct 3D motion leads to the "smoothest" estimated depth.

The error function

- A normal flow measurement:

$$
u_{\mathrm{n}}=\frac{1}{Z} \mathbf{u}_{\mathrm{tr}} \cdot \mathbf{n}+\mathbf{u}_{\mathrm{rot}} \cdot \mathbf{n}
$$

- The error function to be minimized:

$$
\Theta=\sum_{R} \sum_{i} W_{i}\left(\hat{u}_{\mathrm{n}}-u_{\mathrm{n}}\right)^{2}
$$

- Global parameters: $\hat{\mathbf{t}}, \hat{?}$
- Local parameter: \hat{Z}

Error function evaluation

- Given a translation candidate $\hat{\mathbf{t}}$, each local depth can be computed as a linear function of the rotation?
- We obtain a second order function of the rotation; its minimization provides both the rotation and the value of the error function.

Handling depth discontinuities

- Given a candidate motion, the scene depth can be estimated and further processed to find depth discontinuities.
- Split a region if it corresponds to two depth values separated in space.

The algorithm

- Compute spatio-temporal image derivatives and normal flow.
- Find the direction of translation that minimizes the depth-variability criterion.
- Hierarchical search of the 2D space.
- Iterative minimization.
- Utilize continuity of the solution in time; usually the motion changes slowly over time.

Sources:

- Horn (1986)
- http://www.cfar.umd.edu/ftp/TRs/CVL-Reports-1993/TR3064Fermuller.ps.gz
http://www.cfar.umd.edu/ftp/Trs/CVL-Reports-1995/TR3484Fermuller.ps.gz (patterns on normal flow)
- http://www.cfar.umd.edu/ftp/TRs/CVL-Reports-1999/TR4000brodsky.ps.gz (depth variability constraint)

