

Examples of Motion Fields II

(a) Translation perpendicular to a surface. (b) Rotation about axis perpendicular to image plane. (c) Translation parallel to a surface at a constant distance. (d) Translation parallel to an obstacle in front of a more distant background.

2 Cases Where this Assumption Clearly is not Valid

(a) A smooth sphere is rotating under constant illumination. Thus the optical flow field is zero, but the motion field is not.
(b) A fixed sphere is illuminated by a moving source - the shading of the image changes. Thus the motion field is zero, but the optical flow field is not.

The Information from Image Motion

- 3D motion between observer and scene + structure of the scene
- Wallach O'Connell (1953): Kinetic depth effect
- Motion parallax: two static points close by in the image with different image motion; the larger translational motion corresponds to the point closer by (smaller depth)
- Recognition
- Johansson (1975): Light bulbs on joints

Motion Field and Optical Flow Field

- Motion field: projection of 3D motion vectors on image plane

What is Meant by Apparent Motion of Brightness Pattern?

The apparent motion of brightness patterns is an awkward concept. It is not easy to decide which point P^{\prime} on a contour C^{\prime} of constant brightness in the second image corresponds to a particular point P on the corresponding contour C in the first image

(a) Line feature observed through a small aperture at time t.
(b) At time $t+\delta t$ the feature has moved to a new position. It is not possible to determine exactly where each point has moved. From local image measurements only the flow component perpendicular to the line feature can be computed.
Normal flow: Component of flow perpendicular to line feature.

The Optical Flow Constraint Equation

Let $E(x, y, t)$ be the irradiance and $u(x, y), v(x, y)$ the components of optical flow.
$E(x+u \delta t, y+v \delta t, t+\delta t)=E(x, y, t)$
Taylor expansion
$E(x, y, t)+\delta x \frac{\partial E}{\partial x}+\delta y \frac{\partial E}{\partial y}+\delta t \frac{\partial E}{\partial t}+e=E(x, y, t)$
dividing by δt and taking limit $\delta t \rightarrow 0$
$\frac{\partial E}{\partial x} \frac{d x}{d t}+\frac{\partial E}{\partial y} \frac{d y}{d t}+\frac{\partial E}{\partial t}=0$
which is the expansion of the totalderivative
$\frac{d E}{d t}=0$
short: $E_{x} u+E_{y} v+E_{t}=0$

Interpretation

 iterative equations

\bar{u}, \bar{v} denotes local averages of u and v
$u^{n+1}=\bar{u}^{n}-\frac{\left(E_{x} \bar{u}^{n}+E_{y} \bar{v}^{n}+E_{t}\right)}{\frac{1}{\lambda}+E_{x}{ }^{2}+E_{y}{ }^{2}} E_{x}$
$v^{n+1}=\bar{v}^{n}-\frac{\left(E_{x} \bar{u}^{n}+E_{y} \bar{v}^{n}+E_{t}\right)}{\frac{1}{\lambda}+E_{x}{ }^{2}+E_{y}{ }^{2}} E_{y}$

In the iterative scheme for estimating the optical flow, the new value (u, v) at a point is the average of the values of the neighbors (\bar{u}, \bar{v}), minus an adjustment in the direction toward the constraint line.

- This approach is called regularization.
- Solve by means of calculus of variation.

Other Differential Techniques

- Lucas Kanade (1984): Weighted least-squares (LS) fit to a constant model of \mathbf{u} in a small neighborhood Ω;
$\sum_{\mathbf{x} \in \Omega} W^{2}(\mathbf{x})\left(\nabla E(\mathbf{x}, t) \cdot \mathbf{u}+E_{t}(\mathbf{x}, t)\right)^{2} \rightarrow \min$
Denote $A=\left(\nabla E\left(\mathbf{x}_{1}\right), \ldots, \nabla E\left(\mathbf{x}_{n}\right)\right)^{T}, W=\operatorname{diag}\left(W\left(\mathbf{x}_{1}\right), \ldots, W\left(\mathbf{x}_{n}\right)\right)^{T}$,
$\mathbf{b}=-\left(E_{t}\left(\mathbf{x}_{1}\right), \ldots, E_{t}\left(\mathbf{x}_{n}\right)\right)^{T}$
$\mathbf{u}=\left(A^{T} W^{2} A\right)^{-1} A^{T} W^{2} \mathbf{b}$
- Nagel $(1983,87)$: Oriented smoothness constraint; smoothness is not imposed across edges
$\iint\left(\nabla E^{T} \mathbf{u}+E_{t}\right)^{2}+\frac{\alpha^{2}}{\|\nabla E\|_{2}{ }^{2}+2 \delta} \times\left[\left(u_{x} E_{y}-u_{y} E_{x}\right)^{2}+\left(v_{x} E_{y}-v_{y} E_{x}\right)^{2}+\delta\left(\|\nabla u\|_{2}^{2}+\|\nabla v\|_{2}^{2}\right)\right]$
- Uras et al. (1988): Use constraints on second-order derivatives

$$
\frac{d \nabla E(\mathbf{x}, t)}{d t}=0 \quad\left[\begin{array}{ll}
E_{x x}(\mathbf{x}, t) & E_{x y}(\mathbf{x}, t) \\
E_{x y}(\mathbf{x}, t) & E_{y y}(\mathbf{x}, t)
\end{array}\right]\binom{u}{v}=-\binom{E_{t x}(\mathbf{x}, t)}{E_{t y}(\mathbf{x}, t)}
$$

3 Computational Stages

1. Prefiltering or smoothing with low-pass/band-pass filters to enhance signal-tonoise ratio
2. Extraction of basic measurements (e.g., spatiotemporal derivatives, spatiotemporal frequencies, local correlation surfaces)
3. Integration of these measurements, to produce 2 D image flow using smoothness assumptions

Classification of Optical Flow Techniques

- Gradient-based methods
- Frequency-domain methods
- Correlation methods

Energy-based Methods

- Adelson Berger (1985), Watson Ahumada (1985), Heeger (1988) Fourier transform of a translating 2D pattern:

$F E\left(w_{s}, w_{y}, w_{i}\right)=F E\left(w_{w}, w_{y}, 0\right)\left(w_{s} u+w_{y}, v+w_{i}\right)$

All the energy lies on a plane through the origin in frequency space Local energy is extracted using velocity-tuned filters (for example, Gabor-energy filters)
Motion is found by fitting the best plane in frequency space

- Fleet Jepson (1990): Phase-based Technique

Assumption that phase is preserved (as opposed to amplitude)

- Velocity tuned band pass filters have complex-valued outputs
$R(x, t, w)=\rho(x, t, w) e^{i \phi(x, t, w)}$
with ρ the amplitude and ϕ the phase
$\frac{\mathrm{d} \phi}{\mathrm{dt}}=0 \quad$ or $\quad \phi_{x} u+\phi_{y} v+\phi_{t}=0$

A Pattern of Hajime Ouchi

Anandan (1987), Singh (1990)

1. Find displacement (dx, dy) which maximizes cross correlation
$C C(d x, d y)=\sum_{j=-n}^{+n} \sum_{i=-n}^{+n} W(i, j) \cdot E_{1}(i, j) \cdot E_{2}(i-d x, j-d y)$
or minimizes sum of squared differences (SSD)
$S S D(d x, d y)=\sum_{j=n}^{m} \sum_{i=n}^{m} W(i, j) \cdot\left(E_{1}(i, j)-E_{2}(i-d x, j-d y)\right)^{2}$
2. Smooth the correlation outputs

Bias in Flow Estimation

Symmetric noise in spatial and temporal derivatives
Notation: $\delta A=A-A^{\prime}$, where A is the estimate, A^{\prime} the actual value and δA the error
$\left(E_{x_{i}}-\delta E_{x_{i}}\right) u+\left(E_{y_{i}}-\delta E_{y_{i}}\right) v=E_{t_{i}}-\delta E_{t_{i}}$
in matrix form $(E-\delta E) \mathbf{u}=\mathbf{b}$
LS solution $\mathbf{u}=\left(E^{T} E\right)^{-1} E^{T} \mathbf{b}$
expected value of $\mathbf{u} E(\mathbf{u})=\mathbf{u}^{\prime}-n \sigma_{s}{ }^{2}\left(E^{, T} E^{\prime}\right)^{-1} \mathbf{u}$
n number of measurements
σ_{s} standard deviation of spatial noise

- Underestimation in length
- Bias in direction: more underestimation in direction of fewer measurements

Epipolar Constraint for Discrete Motions

C^{\prime}-C, $m-C, m^{\prime}-C^{\prime}$ coplanar, or \mathbf{t}, \mathbf{m} and $R \mathbf{m}^{\prime}$ coplanar
$(\mathbf{t} \times \mathbf{m})^{T} \cdot R \mathbf{m}^{\prime}=0$ epipolar constraint
$\left([\mathbf{t}]_{\times} \mathbf{m}\right)^{T} \cdot R \mathbf{m}^{\prime}=0$

Sources:

- Horn (1986)
- J. L. Barron, D. J. Fleet, S. S. Beauchemin (1994). Systems and Experiment. Performance of Optical Flow Techniques. IJCV 12(1):4377. Available at http://www.cs.queesu.ca/home/fleet research/Projects/flowCompare.html
- http://www.cfar.umd.edu/~fer/postscript/ouchipapernew.ps.gz (paper on Ouchi illusion)
- http://www.cfar.umd.edu./ftp/TRs/CVL-Reports-1999/TR4080fermueller.ps.gz (paper on statistical bias)
- http://www.cis.upenn.edu/~beau/home.html
http://www.isi.uu.nl/people/michael/of.html (code for optical flow estimation techniques)

