Motion and Flow



The Information from Image
Motion

3D motion between observer and scene +
structure of the scene

— Wallach O’Connell (1953): Kinetic depth effect

— Motion parallax: two static points close by in
the image with different image motion; the
larger translational motion corresponds to the
point closer by (smaller depth)

* Recognition
— Johansson (1975): Light bulbs on joints



Examples of Motion Fields I

(a) (b)

(a) Motion field of a pilot looking straight ahead while approaching a fixed
point on a landing strip. (b) Pilot is looking to the right in level flight.
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(a) Translation perpendicular to a surface. (b) Rotation about axis
perpendicular to image plane. (¢) Translation parallel to a surface at a
constant distance. (d) Translation parallel to an obstacle in front of a more
distant background.



Motion Field and Optical Flow Field

* Motion field: projection of 3D motion vectors on image plane

Object point P, has velocity v, induces v, in image

dr, dr,
Vo=—+ V=
dt dt
r, r
r, related tor, by - = —2
r, 7,

* Optical flow field: apparent motion of brightness patterns
*  We equate motion field with optical flow field



2 Cases Where this Assumption
Clearly 1s not Valid

(a)

(b)

(a)

(b)

A smooth sphere is rotating
under constant illumination.
Thus the optical flow field
1s zero, but the motion field
1S not.

A fixed sphere 1s
illuminated by a moving
source—the shading of the
image changes. Thus the
motion field is zero, but the
optical flow field is not.



What 1s Meant by Apparent
Motion of Brightness Pattern?

The apparent motion of brightness patterns is an awkward concept. It 1s not
easy to decide which point P’ on a contour C’ of constant brightness in the

second 1image corresponds to a particular point P on the corresponding
contour C in the first image.



Aperture Problem

(a) (b)

(a) Line feature observed through a small aperture at time .

(b) At time r+0f the feature has moved to a new position. It is not possible
to determine exactly where each point has moved. From local image
measurements only the flow component perpendicular to the line
feature can be computed.

Normal flow: Component of flow perpendicular to line feature.



The Optical Flow Constraint Equation

Let E(x, y,¢)be the irradiance and u(x, y), v(x, y) the components of optical flow.
E(x+ubt,y+vdt,t +8t)= E(x, y,t)
Taylor expansion

E(x,y,t)+8xa—E+5ya—E+5ta—E+e = E(x, y,t)
ox dy ot
dividing by o¢ and taking limit &t — 0
OE dx OJEdy OE
+ +— =
ox dt dy dt ot
which 1s the expansion of the total derivative
dE _
dt

short: |E u+E v+ E, =0

0




Interpretation

Values of (u, v) satisfying
the constraint equation lie
on a straight line in velocity
space. A local measurement
only provides this constraint
line (aperture problem).
Normal flow u,

(Ex,Ey ) (u,v)=—E
(EE,)
(£

t

Letn=

— _ExEt _EJ/EZ‘
JEZ+E JEX+E)

u, =(u-n)n

n




Additional Constraints

« Additional constraints are necessary to estimate optical flow, for
example, constraints on size of derivatives, or parametric models of the
velocity field.

* Horn and Schunck (1981): global smoothness term
e, = J. J (uxz +u y2 )+(vx2 + vy2 )dx dy : departure from smoothness
D
e, = J. J (Exu +EVv+E, )2 dx dy : error 1n optical flow constraint equation
D

LetVA = (Ax A, )T denote the gradient of A4
[[(VE-w+E)Y + A([Vu,” + V], Jdx dy — min

« This approach is called regularization.

* Solve by means of calculus of variation.



Discrete implementation leads to Geometric interpretation
iterative equations

u,v denotes local averages of v and v

o ( Eu"+Ev"+ Ez) In the iterative scheme for estimating
woo=um— . ; L, the optical flow, the new value (1, v)
—+F "+ E .
x Y at a point is the average of the values
. (E u"+Ev"+ Et) of the neighbors (i, V), minus an
Vi =yt -2 : . .
1 > ) Y adjustment in the direction toward the
+E +E,

constraint line.



Other Differential Techniques

Lucas Kanade (1984): Weighted least-squares (LS) fit to a constant model of
u in a small neighborhood €2;

ZW NVE(x,t)-u+E,(x,¢))> = min
xeQ

Denote 4 = (VE(x,),...,VE(x,)), W =diag(x,),...,W(x,)),
b = _(Et (Xl )9 . -aEz (Xn ))T
—(4"W?4) A"WDp
Nagel (1983,87): Oriented smoothness constraint; smoothness 1s not imposed

across edges
2

[[VEw+E) + WE’OZ TR .2, ~u,E. Y+, E, v, E. P +8(Vul> +|Vv )|
2

Uras et al. (1988): Use constraints on second-order derivatives

dVE(X,t)_O Exx(X,t) Exy(xﬂt) ul_ Etx(xat))
dt B Exy(x,t) Eyy(x,t) (v)_ Ety(x,t))




Classification of Optical Flow
Techniques

 (Gradient-based methods
* Frequency-domain methods
* Correlation methods



3 Computational Stages

1. Prefiltering or smoothing with
low-pass/band-pass filters to enhance signal-to-
noise ratio

2. Extraction of basic measurements (€.g.,
spatiotemporal derivatives, spatiotemporal
frequencies, local correlation surfaces)

3. Integration of these measurements, to produce 2D
image flow using smoothness assumptions



Energy-based Methods

« Adelson Berger (1985), Watson Ahumada (1985), Heeger (1988):
Fourier transform of a translating 2D pattern:

FE(WX,Wy,Wt)ZFE(WX,WJ),O)B(WXM+WyV+W,)
All the energy lies on a plane through the origin in frequency space

Local energy is extracted using velocity-tuned filters (for example,
Gabor-energy filters)

Motion is found by fitting the best plane in frequency space
* Fleet Jepson (1990): Phase-based Technique
— Assumption that phase is preserved (as opposed to amplitude)
— Velocity tuned band pass filters have complex-valued outputs
R(x,t,w)=p(x,t,w)e®")
with p the amplitude and ¢ the phase

%:O or ¢, u+¢ v+0,=0



Correlation-based Methods

Anandan (1987), Singh (1990)
1. Find displacement (dx, dy) which maximizes cross correlation

CC(dx,dy) = 2 ZW j)-E,(i—dx, j—dy)

j=—n i=—n

or minimizes sum of squared differences (SSD)

SSDdxdy Z ZWZ] ) 2(i—abc,j—c‘ly))2

2. Smooth the correlation outputs



A Pattern of Hajime Ouchi
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Bias in Flow Estimation

Symmetric noise in spatial and temporal derivatives
Notation: 04=A4-A' where A is the estimate, 4’ the actual value and 04 the
error

(E, —OE, W+(E, —8E, v=E, —8E,

in matrix form (E—8E)u =b

LSsolution u=(E"E) E"b

expected valueof u E(u)=u'-nc ° (E "E ')_lu'
n number of measurements

o , standard deviation of spatial noise

e Underestimation in length
 Bias in direction: more underestimation in direction of fewer
measurements



Epipolar Constraint for Discrete Motions
C'-C,m—C,m'-C"coplanar, or t, m and Rm'coplanar

(txm)’ - Rm'= 0 epipolar constraint

(tlom)" - Rm'=0

m’'EFm'=0,E =[t| R

m, 0 —m,
Def:|m, | =| m, 0 -
M LMy




— =

Consider a line ax+by+c=0or|a,b,c]| v [=0,
1

orm’/=0with!=[a,b,c] andm = lx, y

If a line goes through two points m, and

thenm, /=0andm, /=00r/=m, xm

[ . and [’ are the corresponding epipolar 1
[  =eXRm'=txXRm'= Fm'

[ . =FEm

Epipolar constraint :m’ Em'=0orm’/_,

points lie on their corresponding epipolar Tines.

The epipole lies on all epipolar lines
e’ Fm'=0Vm',ore’ £ =0.

e =Ly,LE) —EyEs,

e, =Ly By, — By By

ey = bk —Ey K,



Sources:

Horn (1986)

J. L. Barron, D. J. Fleet, S. S. Beauchemin (1994). Systems and
Experiment. Performance of Optical Flow Techniques. ZJCV 12(1):43—
77. Available at http://www.cs.queesu.ca’home/fleet/

research/Projects/flowCompare.html

http://www.cfar.umd.edu/~fer/postscript/ouchipapernew.ps.gz (paper
on Ouchi illusion)

http://www.cfar.umd.edu./ftp/TRs/CVL-Reports-1999/TR4080-
fermueller.ps.gz (paper on statistical bias)

http://www.cis.upenn.edu/~beau/home.html

http://www.ist.uu.nl/people/michael/of.html (code for optical flow
estimation techniques)



