

From Image to Shape

- Four main factors
- Geometry of the scene
- Reflectance of the visible surfaces
- Illumination direction and distributio
- Viewpoint
- Can we compute scene geometry from distribution of pixel brightness in scene image?
- Only in very simple situations

- Too many unknowns in general

Scene geometry

Perception of Shape from

 Shading \qquad- Continuous image brightness variation due to shape variations is called shading
- Our perception of shape depends on shading
- Circular region on left is perceived as a flat disk
- Circular region on right has a varying brightness and is perceived as a sphere

How Do We Do It?

- Humans have to make assumptions about illumination bump (left) is perceived as hole (right) when upside down

Illumination direction is unknown. It is assumed to come from abốve

Psychophysics

- What assumptions do people make about surface reflectance?
- Is an estimate of illumination direction necessary?
- Stimuli: Shaded ellipsoids with varying
- Elongations
- Directions of light source
- Reflectance
- Cast shadows
- Test: judge direction of light and surface orientations at discrete points

- Task is hard: errors 15 to 20 degrees
- No effect of glossiness, no Lambertian surface assumption
- No correlation between judgement of light directions and shape
- No prior estimate of light direction
- Poor discrimination between elongated and rounded ellipsoids
- Qualitative information

Human Shading Interpretation

- Is it metric or ordinal?
- Metric: depth
- Ordinal: depth order
- Answer
- Ordinal, qualitative
- Magnitude of shading gradient is not important

From Normals to Surface Shape

- Fit a surface that is locally perpendicular to the normals

Review: Lambertian Surfaces

- If BRDF is a constant K, surface is called a Lambertian surface
- $d E=L^{\prime} \cos \theta_{0} d \omega=k L^{\prime} \cos \theta_{0}$
- $L=K d E=K_{1} L^{\prime} \cos \theta_{0}$
- Radiance is same in all directions and is proportional to $\cos \theta_{0}$

$$
\text { Scene, } d A
$$

Simple Radiometric Modeling

- Pixel Brightness is proportional to radiance of corresponding scene patch
- Radiance of scene patch is independent of viewpoint
- Radiance of scene patch is proportional to cosine of angle between normal to patch and direction of illumination source
- Therefore pixel brightness is proportional to cosine of angle between normal to patch and direction of illumination source

Gradient Space

- Orientations of normal $(\partial f / \partial x, \partial f / \partial y,-1)$ can be represented by 2 parameters

$$
\begin{aligned}
& p=\partial f / d x \\
& q=\partial f / d y
\end{aligned}
$$

- The components p and q are called the gradient space coordinates of the normal
- Any direction (a, b, c) can be represented by $(-a / c,-b / c,-1)$, and by a point with 2 components ($p=-a / c, q=-b / c$) in the same 2D gradient space
- Example: direction of light source can be written $\left(p_{s}, q_{s}\right)^{7}$

Pixel Brightness and Scene Brightness

Geometric Interpretation of

Gradient Space

- A direction (a, b, c) can be represented by a point on the plane $Z=-1$ by constructing the intersection between the vector of same direction (drawn from the origin) and the plane

Reflectance Map for Point Light Source and Lambertian Surface

- Pixel brightness at pixel (x, y) is proportional to cosine of angle between normal to patch and direction of illumination source

$$
\begin{aligned}
& \quad I(x, y)=k \cos (\theta)=k \frac{\left(p_{s}, q_{s},-1\right)}{\sqrt{p_{s}^{2}+q_{s}^{2}+1}} \bullet \frac{(p, q,-1)}{\sqrt{p^{2}+q^{2}+1}} \\
& I(x, y) / k=k^{\prime}=\frac{p_{s} p+q_{s} q+1}{\sqrt{p_{s}^{2}+q_{s}^{2}+1} \sqrt{p^{2}+q^{2}+1}}
\end{aligned}
$$

- For a given pixel brightness, the locus of possible normals (p, q) in gradient space is a conic

Using Reflectance Map to
Find Normals
- We are on the image at a pixel
where we know the direction of
the normal, a point in the
reflectance map
- Find Gradient 1 at pixel
- Find Gradient 2 at
reflectance map point
- Move in image by Gradient 2 Image
- Then the corresponding point
in reflectance map is moved by
Gradient 1

Assumptions of
 Shape from Shading

- Surfaces with constant albedo
- Orthographic projection
- Distant point sources
- Absence of cast shadows
- Insignificance of secondary illumination
- This one is a real problem: inter-reflections are everywhere

Application to Face Recognition (Zhao and Chellappa)

- Appearance of faces changes when viewing and lighting directions change
- Face databases use front views and frontal lighting
- If we can reconstruct 3D face shape, we can convert any face image into a front-view with frontal lighting and compare to the database faces
- Use shape from shading and symmetry of face
- Or assume generic shape, but varying albedo, and remove unknown albedo by using symmetry of face

Synthetic faces for
4 angles and
2 illuminations

- Different illumination conditions lead to different reflectance maps
- Each reflectance map can be computed if we know position of point light source
- Intersection of 2 iso-brightness contours corresponding to same brightness provides 2 possible normal directions for pixels having that brightness value
- Three maps give unambiguous normals for each pixel

- Accurate computation of shape from shading is unlikely to succeed in real world
- Shape from shading may be used as a complementary process
- Edges are more reliable indicators of shape

- Diffuse light sources (overcast sky)
- Interreflections between surfaces generate secondary light sources
- Surfaces have varying light absorption (albedo)
- Surface reflections range from Lambertianto specular
- Surfaces cast shadows on each other

Conclusions

- Accurate computation of shape from shading is unlikely to succeed in the real world
- Edges are more reliable indicators of shape
- Shape from shading may be used as a complementary process in combination with shape inference from edges
- There is still a lot of research activity in this area, so it is useful to have an idea of the terminology and the techniques (reflectance map, etc.)

References

- A Guided Tour of Computer Vision, Vishvjit S. Nalwa, AT\&T Press, 1993
- Robot Vision, B.K.P. Horn, MIT Press
- "Perceiving Shape from Shading", V.S. Ramachandran, Scientific American, 1988, pp. 76-83
- "SFS Based View Synthesis for Robust Face Recognition", W.Y. Zhao and R. Chellappa, www.cfar.umd.edu/~wyzhao

