

Perception of Shape from Shading

- Continuous image brightness variation due to shape variations is called *shading*
- Our perception of shape depends on shading
- Circular region on left is perceived as a flat disk
- Circular region on right has a varying brightness and is perceived as a sphere

2

From Image to Shape

- · Four main factors
 - Geometry of the scene
 - Reflectance of the visible surfaces
 - Illumination direction and distribution
 - Viewpoint
- Can we compute scene geometry from distribution of pixel brightness in scene image?
 - Only in very simple situations
 - Too many unknowns in general

Scene geometry

How Do We Do It?

 Humans have to make assumptions about illumination: bump (left) is perceived as hole (right) when upside down

Illumination direction is unknown. It is assumed to come from above

Does Shading Play a Central Role?

- Contour plays a more important role
 - Variations in intensity are same on both shapes
 - Upper region is perceived as composed of three cylindrical pieces illuminated from above
 - Lower region is perceived as sinusoidal, illuminated from one side
 - Note the ambiguities of the surface perceptions, depending on assumed illumination direction

2 possible illumination hypotheses

Psychophysics

(Perception of Solid Shape from Shading, Mingolla & Todd, 1986)

- What assumptions do people make about surface reflectance?
- Is an estimate of illumination direction necessary?
- Stimuli: Shaded ellipsoids with varying
 - Elongations
 - Directions of light source
 - Reflectance
 - Cast shadows
- Test: judge direction of light and surface orientations at discrete points

6

Results

- Task is hard: errors 15 to 20 degrees
- No effect of glossiness, no Lambertian surface assumption
- No correlation between judgement of light directions and shape
 - No prior estimate of light direction
- Poor discrimination between elongated and rounded ellipsoids
 - Qualitative information

Human Shading Interpretation

- Is it metric or ordinal?
 - Metric: depth
 - Ordinal: depth order
- · Answer:
 - Ordinal, qualitative
 - Magnitude of shading gradient is not important

Quantitative Shape Recovery

- · Orthographic projection
- We have gray levels at pixels (x, y)
- We want to recover the orientations of the normals at points (x, y, z)
- By integration, we want to obtain z = f(x,y)

From Normals to Surface Shape

Fit a surface that is locally perpendicular to the normals

10

Review: Radiance

- Radiance *L* (θ₁) is power emitted per unit area (flux) into a cone having unit solid angle
 - Area used is foreshortened area in direction q_1

Review: Reflectance

- · Reflection is characterized by reflectance
- Reflectance is ratio radiance/irradiance
- Described by a function called Bidirectional Reflectance Distribution Function BRDF
- BRDF = $f(\theta_i, \phi_i, \theta_e, \phi_e) / dE(\theta_i, \phi_i)$

12

Review: Lambertian Surfaces

- If BRDF is a constant K, surface is called a Lambertian surface
- $dE = L' \cos \theta_0 d\omega = k L' \cos \theta_0$
- $L = K dE = K_1 L' \cos \theta_0$

Simple Radiometric Modeling

- · Pixel Brightness is proportional to radiance of corresponding scene patch
- · Radiance of scene patch is independent of viewpoint
- Radiance of scene patch is proportional to cosine of angle between normal to patch and direction of illumination source
- Therefore pixel brightness is proportional to cosine of angle between normal to patch and direction of illumination source

Normals to z = f(x, y)

- · We intersect surface z=f(x,y) with red plane and blue plane
- We find tangents to red curve and blue curve
- We write that normal is perpendicular to 2 tangents and is in direction of cross-product

- Red tangent $(1, 0, \partial f / \partial x)$
- $(0, 1, \partial f / \partial y)$ • Blue tangent
- $(\partial f / \partial x, \partial f / \partial y,^{16} 1)$ • Normal

Gradient Space

• Orientations of normal $(\partial f / \partial x, \partial f / \partial y, -1)$ can be represented by 2 parameters

$$p = \partial f / dx$$

$$q = \partial f / dy$$

- The components p and q are called the *gradient* space coordinates of the normal
- Any direction (a, b, c) can be represented by (-a/c, -b/c, -1), and by a point with 2 components (p = -a/c, q = -b/c) in the same 2D gradient space
 - Example: direction of light source can be written (p_s, q_s)^{1/2}

Geometric Interpretation of

• A direction (a, b, c) can be represented by a point on the plane Z=-1 by constructing the intersection between the vector of same direction (drawn from the origin) and the plane

Reflectance Map

• A reflectance map is a 2D lookup table that gives the pixel brightness as a function of the orientation of the scene surface in camera coordinates

Reflectance Map for Point Light Source and Lambertian Surface

Pixel brightness at pixel (x, y) is proportional to cosine of angle between normal to patch and direction of illumination source

$$I(x,y) = k\cos(q) = k\frac{(p_s, q_s, -1)}{\sqrt{p_s^2 + q_s^2 + 1}} \bullet \frac{(p_s, q_s, -1)}{\sqrt{p_s^2 + q_s^2 + 1}}$$

$$p_s p_s + q_s q_s + 1$$

$$I(x, y)/k = k' = \frac{p_s p + q_s q + 1}{\sqrt{p_s^2 + q_s^2 + 1} \sqrt{p^2 + q^2 + 1}}$$

• For a given pixel brightness, the locus of possible normals (p,q) in gradient space is a conic

Locus of Iso-Brightness in Reflectance Map •For a given light Surface normals that produce source, maximum brightness occurs a given brightness are at a constant angle with respect to when $(p, q) = (p_s, q_s)$ direction of illumination • The directions belong to a cone • The locus corresponding to each brightness in the reflectance map is the intersection of the cone with

Plane Z=-1

Reflectance Map Obtained by Calibration Object

- A sphere can be used as a calibration object
- 1. Find distance of pixel to center of sphere
- 2. If distance < radius, compute direction of normal to sphere surface, and (p, q) for pixel
- 3. At position (p, q) of reflectance map, store pixel value
 - Useful only for scene material similar to sphere

Using Reflectance Map to **Find Normals**

- We are on the image at a pixel where we know the direction of the normal, a point in the reflectance map
- Find Gradient 1 at pixel

the plane Z = -1

- Find Gradient 2 at reflectance map point
- Move in image by Gradient 2 Image Then the corresponding point
- in reflectance map is moved by Gradient 1

Reflectarce Map

Proof

- Gradient 1 in image =
- Gradient 2 in reflectance map =
- If (dx, dy) = Gradient 2, $dp = \frac{\partial p}{\partial x} dx + \frac{\partial p}{\partial y} dy = \frac{\partial p}{\partial x} dx + \frac{\partial q}{\partial x} dy$ $dp = \frac{\partial R}{\partial p} \frac{\partial p}{\partial x} + \frac{\partial R}{\partial q} \frac{\partial q}{\partial x} = \frac{\partial I}{\partial x}$

$$dq = \frac{\partial R}{\partial p} \frac{\partial p}{\partial y} + \frac{\partial R}{\partial q} \frac{\partial q}{\partial y} = \frac{\partial I}{\partial y}$$
$$dq = \frac{\partial R}{\partial p} \frac{\partial p}{\partial y} + \frac{\partial R}{\partial q} \frac{\partial q}{\partial y} = \frac{\partial I}{\partial y}$$

• Then (dp, dq) = Gradient 1

From Normals to Surface Shape

· Step by step

$$z(x+dx, y+dy) = z(x, y) + dz$$

expression for Laplacian of z

$$\Delta z = \frac{\partial p}{\partial x} + \frac{\partial q}{\partial y}$$

- Second order differential equation

Application to Face Recognition (Zhao and Chellappa)

- Appearance of faces changes when viewing and lighting directions change
- Face databases use front views and frontal lighting
- If we can reconstruct 3D face shape, we can convert any face image into a front-view with frontal lighting and compare to the database faces
- Use shape from shading and symmetry of face
- Or assume generic shape, but varying albedo, and remove unknown albedo by using symmetry of face

Synthetic faces for 4 angles and 2 illuminations

Photometric Stereo

· Move light source at different known positions to obtain different shadings of object with unknown geometry

Scene geometry

Photometric Stereo

- · Different illumination conditions lead to different reflectance maps
 - Each reflectance map can be computed if we know position of point light source
- Intersection of 2 iso-brightness contours corresponding to same brightness provides 2 possible normal directions for pixels having that brightness value

Three maps give unambiguous normals for each pixel

Assumptions of Shape from Shading

- · Surfaces with constant albedo
- Orthographic projection
- · Distant point sources
- · Absence of cast shadows
- · Insignificance of secondary illumination
 - This one is a real problem: inter-reflections are everywhere

Inter-Reflections

black surface Accurate computation of shape from shading is unlikely to succeed in real world

- Shape from shading may be used as a complementary process
- Edges are more reliable indicators of shape

The Real World

- Diffuse light sources (overcast sky)
- Interreflections between surfaces generate secondary light sources
- Surfaces have varying light absorption (albedo)
- Surface reflections range from Lambertian to specular
- · Surfaces cast shadows on each other

31

Conclusions

- Accurate computation of shape from shading is unlikely to succeed in the real world
- Edges are more reliable indicators of shape
- Shape from shading may be used as a complementary process in combination with shape inference from edges
- There is still a lot of research activity in this area, so it is useful to have an idea of the terminology and the techniques (reflectance map, etc.)

32

References

- A Guided Tour of Computer Vision, Vishvjit S. Nalwa, AT&T Press, 1993
- Robot Vision, B.K.P. Horn, MIT Press
- "Perceiving Shape from Shading", V.S. Ramachandran, Scientific American, 1988, pp. 76-83
- "SFS Based View Synthesis for Robust Face Recognition", W.Y.Zhao and R. Chellappa, www.cfar.umd.edu/~wyzhao

33