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Optimization - 2

CMSC828 D

Outline
• Cost functions (last class)
• Given a cost function we can calculate

– The global minimum
– A local minimum

• Algorithms can be classified according to
– Derivative information available/not available or expensive

• Derivatives via finite-differences

– Linear or nonlinear
– Local minimum or global minimum
– Differential or “statistical”
– Constrained or Unconstrained

• Read Chapter 10-0 of Numerical Recipes.
• Focus will not be on details but educated use of these 

routines as black-boxes.

Bracketing methods in 1D
• Knowing the function value at 3 points bracket a minimum

• Find a better approximation to the minimum
– Golden bisection

– Parabola fitting

– Methods using derivative information 

• 1-D search methods important for multi-dimensional algorithms

• (Read Chapter 10-1 through 10-3 of Numerical Recipes)

Bracketing a minimum in multiple dimensions

• Smallest region bounded by a group of points in
– 1D is bounded by two points (a line segment)

– 2D is bounded by three points (a triangle)

– 3D by four points (a tetrahedron)

– In ND by N+1 points (a simplex)

• Can find a direction of a decreasing function in 
– 1D by the line from point with higher value to lower

– 2D by joining point with highest value through point with average 
value on the opposite side of the  triangle

– And so on for ND

• However cannot guarantee a bracket of a minimum in ND

Downhill Simplex Method (Nelder-Mead)
• Reflection: Project along the 

direction of decrease with size 1.

• Reflection and expansion:If 
decrease is large try a step of 
size 2. 

• Contraction: Result of reflection 
is bad, so try a simple reduction 
within simplex.

• Multiple contraction: If result of 
contraction does not give a better 
result than lowest point.

• Conclude: volume of simplex 
becomes below tolerance.

Basic calculus
• The direction of maximum increase of a function at a point 

x is along ∇f(x)

• Critical points of a function f are at df/dx=0 or ∇f=0.
– One way of optimizing is to find x where ∇f=0 

– However this can usually be done easily only in one dimension 

• Taylor series
– 1D

– Multiple dimensions

– Vector valued 
function 

• Newton’s method for solving f(x)=0.
– Given f(x)≠0 seek a correction, h, to x, so that f(x+h)=0
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Newton’s Method
• If f(x) is a scalar valued function of n variables x

– No way to get n equations from one equation above

– Use steepest descent methods 

• However in optimization problems we are usually solving 
for the minimum of a scalar valued function of multiple 
variables f(x), where x is an n dimensional vector
– We need to solve an equation of the type g(x)= ∇f=0

– Same prescription works but now ∇g is a matrix called the 
Jacobian matrix 

– Solve the equation to get corrections and iterate

• However note that we are actually computing Hessian of f
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Gradient Descent
• We have a function f and an estimate of its gradient ∇f

• Decrease f by a quantity along the direction of ∇f
– Begin initialize x, tol, k=0

do k<-k+1

x x-hk ∇f

until hk∇f<tol`

return x
end

• Determining h is not easy
– Called “learning rate” in AI

– Hard to determine h
• If h is too small algorithm will be too slow to converge. If it is too large the 

procedure will diverge

• Can select it using a line search or using a Newton method.

Selecting step size in Gradient Descent
• Recall

• We cannot get hi in general

• However we can minimize along a direction
– Restrict to the direction of ∇f. Let u be a vector in this direction

– Minimize the one dimensional function of t, f(x+tu) by using the 
one dimensional minimization techniques discussed earlier.

– Recompute gradient at the new point and repeat the search in the 
new direction

– Once t values become small we have converged

– Each of the initial searches need not be performed with precision
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Function Evaluations
• Often evaluating the function is hard 

– Crash a car to measure a data point

• Analytical expressions for the derivatives are harder, and 
very much prone to programming error.
– Analytical derivatives should always be compared with finite 

difference estimates for accuracy

• Often derivatives are evaluated using finite differences.
– Recall f/= h-1( f(x+h)-f(x)) => 2 function evaluations

– For an n dimensional function we need at least n+1 function 
evaluations to get the derivative

– However recall that this is the least accurate 

• Promising research area: Use chain rule and semantic 
parsing of functions to perform automatic differentiation

Powell’s method
• Sometimes it is not possible 

to estimate the derivative ∇f 
to obtain the direction in a 
steepest descent method

• First guess, minimize along 
one coordinate axis, then 
along other and so on.Repeat

• Can be very slow to converge

• Conjugate directions: Directions which are
independent of each other so that minimizing 
along each one does not move away from the 
minimum in the other directions.

• Powell introduced a method to obtain conjugate
directions without computing the derivative.

More complex methods
• Function can be approximated locally near a point P as 

• Gradient of above equation

• Newton method set gradient equal zero and solve 

• Conjugate directions:
– Minimize along a direction u. In this case the change in ∇f  as x

changes by δx is A. δx
– Minimization in a new direction v should not modify our 

previous minimization. Then v should be chosen so that v.Au=0

– Any two directions that satisfy v.Au=0 are called conjugate 
directions.
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• Use the fact that there is a routine available to calculate f 
and the Jacobian ∇f  to calculate iteratively approaximations 
to the minimum
– Conjugate gradients performs minimizations in conjugate 

directions without constructing A

– Quasi Newton methods construct approximations to A-1 iteratively

• Black boxes, as far as this course is concerned.

• Generally only worth it when we are 
in the vicinity of a minumum.

• For nonlinear problems they often 
converge to a local minimum away
from the true one.

Conjugate gradient and quasi-newton
• Return to problem of model 

fitting by minimizing 

• As before set 

• Observation: steepest descent methods move faster (per 
function evaluation) far away from the minimum while 
Newton methods do well near it.

• Idea combine them so that the method adapts according to 
the location in parameter space.

• Usually for model fitting it is not too difficult to calculate 
derivatives

Levenberg Marquardt

Levenberg Marquardt
• Newton 

• Steepest Descent

• Define                  and 

• Then the Newton equation becomes

• Can combine the two equations by defining a new α matrix

• Vary  λ as the algorithm proceeds according to whether we 
are near the solution or away from it.

LM Algorithm

• When the algorithm has converged set λ=0 and 
compute the final solution

Constrained optimization
• We have to optimize f(x) subject to g(x)=0

– Makes sense if g(x)=0 leaves a few degrees of freedom (N-M)

• Approach 1 (Eliminate constraints)
– Eliminate variables using constraint equations and solve a 

reduced problem f(x*)=0 
– Not practical, except for simple problems

• Approach 2 (Penalty function)
– Construct a new minimization function f(x)+Pg(x) where P>>1
– If constraint is violated the minimization function increases 

rapidly, forcing the optimization routine to solutions where it is 
not violated

• Approach 3 (Lagrange Multipliers)
– Solution has to lie on the surface of g(x)=0
– Can’t have ∇f =0 anymore
– However we require ∇f  parallel to ∇g=0
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Linear programming
• Black box in this course

• Solve problems with systems of linear equality and 
inequality constraints


