Optimization - 2

CMSC828 D

Outline

- Cost functions (last class)
- · Given a cost function we can calculate
 - The global minimum
 - A local minimum
- Algorithms can be classified according to
 - Derivative information available/not available or expensive
 - · Derivatives via finite-differences
 - Linear or nonlinear
 - Local minimum or global minimum
 - Differential or "statistical"
 - Constrained or Unconstrained
- Read Chapter 10-0 of Numerical Recipes.
- Focus will not be on details but educated use of these routines as black-boxes.

Bracketing methods in 1D

- Knowing the function value at 3 points bracket a minimum
- · Find a better approximation to the minimum
 - Golden bisection
 - Parabola fitting
 - Methods using derivative information
- 1-D search methods important for multi-dimensional algorithms
- (Read Chapter 10-1 through 10-3 of Numerical Recipes)

Bracketing a minimum in multiple dimensions

- · Smallest region bounded by a group of points in
 - 1D is bounded by two points (a line segment)
 - 2D is bounded by three points (a triangle)
 - 3D by four points (a tetrahedron)
 - − In ND by N+1 points (a simplex)
- · Can find a direction of a decreasing function in
 - 1D by the line from point with higher value to lower
 - 2D by joining point with highest value through point with average value on the opposite side of the triangle
 - And so on for ND
- However cannot guarantee a bracket of a minimum in ND

Downhill Simplex Method (Nelder-Mead)

- Reflection: Project along the direction of decrease with size 1.
- Reflection and expansion:If decrease is large try a step of size 2.
- Contraction: Result of reflection is bad, so try a simple reduction within simplex.
- Multiple contraction: If result of contraction does not give a better result than lowest point.
- Conclude: volume of simplex becomes below tolerance.

Basic calculus

- The direction of maximum increase of a function at a point x is along ∇f(x)
- Critical points of a function f are at df/dx=0 or $\nabla f=0$.
- One way of optimizing is to find **x** where $\nabla f = 0$
- However this can usually be done easily only in one dimension
- Taylor series
- 1D
- $f(x+h) = f(x) + h \frac{df}{dx}\Big|_{x} + \frac{h^2}{2} \frac{d^2 f}{dx^2}\Big|_{x} + O(h^3)$
- Multiple dimensions $f(\mathbf{x} + \mathbf{h}) = f(\mathbf{x}) + h_i \frac{\partial f}{\partial x_i} + \frac{1}{2} h_i h_j \frac{\partial f}{\partial x_i} \frac{\partial f}{\partial x_j} + O(|\mathbf{h}|^3)$
- Vector valued function
- $f_j(\mathbf{x} + \mathbf{h}) = f_j(\mathbf{x}) + h_i \frac{\partial f_j}{\partial x_i} + \frac{1}{2} h_i h_k \frac{\partial}{\partial x_i} \frac{\partial f_j}{\partial x_i} + O(|\mathbf{h}|^3)$
- Newton's method for solving f(x)=0.
 - Given $f(x) \neq 0$ seek a correction, h, to x, so that f(x+h) = 0

$$f(x+h) = f(x) + hf'(x) = 0$$
 so that $h = -\frac{f(x)}{f'(x)}$

Newton's Method

• If $f(\mathbf{x})$ is a scalar valued function of n variables \mathbf{x}

$$f(\mathbf{x} + \mathbf{h}) = f(x_i + h_i) = f(x_i) + h_i f_i(x_i) = 0$$

- No way to get n equations from one equation above
- Use steepest descent methods
- · However in optimization problems we are usually solving for the minimum of a scalar valued function of multiple variables $f(\mathbf{x})$, where \mathbf{x} is an n dimensional vector
 - We need to solve an equation of the type $\mathbf{g}(\mathbf{x}) = \nabla f = 0$
 - Same prescription works but now ∇g is a matrix called the Jacobian matrix

$$\mathbf{g}(\mathbf{x} + \mathbf{h}) = g_j(x_i + h_i) = g_j(x_i) + h_i \frac{\partial g_j}{\partial x_i} = 0$$

- Solve the equation to get corrections and iterate
- However note that we are actually computing Hessian of f

Gradient Descent

- We have a function f and an estimate of its gradient ∇f
- Decrease f by a quantity along the direction of ∇f
 - Begin initialize x, tol, k=0do k<-k+1 $\mathbf{x} = \mathbf{x} - \mathbf{h}_k \nabla f$ until $\mathbf{h}_k \nabla f < \text{tol}$
 - return x
- · Determining h is not easy
 - Called "learning rate" in AI
 - Hard to determine h
 - If \mathbf{h} is too small algorithm will be procedure will diverge
 - · Can select it using a line search or using a Newton method.

Selecting step size in Gradient Descent

- $f(\mathbf{x} + \mathbf{h}) = f(x_i + h_i) = f(x_i) + h_i f_i(x_i) = 0$ Recall
- We cannot get h_i in general
- · However we can minimize along a direction
 - Restrict to the direction of ∇f . Let **u** be a vector in this direction
 - Minimize the one dimensional function of t, $f(\mathbf{x}+t\mathbf{u})$ by using the one dimensional minimization techniques discussed earlier.
 - Recompute gradient at the new point and repeat the search in the
 - Once t values become small we have converged
 - Each of the initial searches need not be performed with precision

Function Evaluations

- Often evaluating the function is hard
 - Crash a car to measure a data point
- Analytical expressions for the derivatives are harder, and very much prone to programming error.
 - Analytical derivatives should always be compared with finite difference estimates for accuracy
- Often derivatives are evaluated using finite differences.
 - Recall $f = h^{-1}(f(x+h)-f(x)) => 2$ function evaluations
 - For an n dimensional function we need at least n+1 function evaluations to get the derivative
 - However recall that this is the least accurate
- Promising research area: Use chain rule and semantic parsing of functions to perform automatic differentiation

Powell's method

- · Sometimes it is not possible to estimate the derivative ∇f to obtain the direction in a steepest descent method
- First guess, minimize along one coordinate axis, then along other and so on.Repeat
- Can be very slow to converge
- Conjugate directions: Directions which are independent of each other so that minimizing along each one does not move away from the minimum in the other directions.
- Powell introduced a method to obtain conjugate directions without computing the derivative.

- More complex methods
- Function can be approximated locally near a point **P** as

$$f(\mathbf{x}) = f(\mathbf{P}) + \sum_{i} \frac{\partial f}{\partial x_{i}} x_{i} + \frac{1}{2} \sum_{i,j} \frac{\partial^{2} f}{\partial x_{i} \partial x_{j}} x_{i} x_{j} + \cdots$$

$$\approx c - \mathbf{b} \cdot \mathbf{x} + \frac{1}{2} \mathbf{x} \cdot \mathbf{A} \cdot \mathbf{x}$$

$$c = f(\mathbf{P}) \quad \mathbf{b} = -\nabla f|_{\mathbf{P}} \quad [\mathbf{A}]_{ij} = \frac{\partial^{2} f}{\partial x_{i} \partial x_{j}}|_{\mathbf{P}}$$

- Gradient of above equation $\nabla f = \mathbf{A} \cdot \mathbf{x} \hat{\mathbf{b}}$
- Newton method set gradient equal zero and solve $\mathbf{A} \cdot \mathbf{x} = \mathbf{b}$.
- Conjugate directions:
 - Minimize along a direction \mathbf{u} . In this case the change in ∇f as \mathbf{x} changes by δx is A. δx
 - Minimization in a new direction v should not modify our previous minimization. Then ${\bf v}$ should be chosen so that ${\bf v.Au}{=}0$
 - Any two directions that satisfy v.Au=0 are called conjugate directions.

Conjugate gradient and quasi-newton

- Use the fact that there is a routine available to calculate f and the Jacobian ∇f to calculate iteratively approaximations to the minimum
 - Conjugate gradients performs minimizations in conjugate directions without constructing A
 - Quasi Newton methods construct approximations to A-1 iteratively
- Black boxes, as far as this course is concerned.
- Generally only worth it when we are in the vicinity of a minumum.
- For nonlinear problems they often converge to a local minimum away from the true one.

Levenberg Marquardt

- Return to problem of model fitting by minimizing
- As before set $\chi^2(\mathbf{a}) \approx \gamma - \mathbf{d} \cdot \mathbf{a} + \frac{1}{2} \mathbf{a} \cdot \mathbf{D} \cdot \mathbf{a}$
- Observation: steepest descent methods move faster (per function evaluation) far away from the minimum while Newton methods do well near it.
- Idea combine them so that the method adapts according to the location in parameter space.
- Usually for model fitting it is not too difficult to calculate

$$\frac{\partial^2 \chi^2}{\partial a_k \partial a_l} = 2 \sum_{i=1}^N \frac{1}{\sigma_i^2} \left[\frac{\partial y(x_i; \mathbf{a})}{\partial a_k} \frac{\partial y(x_i; \mathbf{a})}{\partial a_l} - [y_i - y(x_i; \mathbf{a})] \frac{\partial^2 y(x_i; \mathbf{a})}{\partial a_l \partial a_k} \right]$$

Levenberg Marquardt

- Newton
- $\mathbf{a}_{\min} = \mathbf{a}_{\mathrm{cur}} + \mathbf{D}^{-1} \cdot \left[-\nabla \chi^2 (\mathbf{a}_{\mathrm{cur}} \right]$

- Steepest Descent $\begin{array}{ll} \textbf{a}_{next} = \textbf{a}_{cur} constant \times \nabla \chi^2(\textbf{a}_{cur}) \\ \bullet \text{ Define } \beta_k \equiv -\frac{1}{2}\frac{\partial \chi^2}{\partial a_k} \text{ and } & \alpha_{kl} \equiv \frac{1}{2}\frac{\partial^2 \chi^2}{\partial a_k \partial a_l} \\ \bullet \text{ Then the Newton equation becomes} & \sum_{l=1}^{M} \alpha_{kl} \delta a_l = \beta_k \end{array}$
- Can combine the two equations by defining a new α matrix $\alpha'_{jj} \equiv \alpha_{jj}(1+\lambda) \quad \alpha'_{jk} \equiv \alpha_{jk} \quad (j \neq k)$ Vary λ as the algorithm proceeds according to whether we
- are near the solution or away from it.

LM Algorithm

- Compute $\chi^2(\mathbf{a})$.
- Pick a modest value for λ , say $\lambda = 0.001$.
- (†) Solve the linear equations (15.5.14) for $\delta \mathbf{a}$ and evaluate $\chi^2(\mathbf{a} + \delta \mathbf{a})$.
- If $\chi^2(\mathbf{a} + \delta \mathbf{a}) \ge \chi^2(\mathbf{a})$, increase λ by a factor of 10 (or any other substantial factor) and go back to (†).
- If $\chi^2(\mathbf{a} + \delta \mathbf{a}) < \chi^2(\mathbf{a})$, decrease λ by a factor of 10, update the trial solution $\mathbf{a} \leftarrow \mathbf{a} + \delta \mathbf{a}$, and go back to (†).
- When the algorithm has converged set $\lambda=0$ and compute the final solution

Constrained optimization We have to optimize f(x) subject to g(x)=0

- - Makes sense if g(x)=0 leaves a few degrees of freedom (N-M)
- Approach 1 (Eliminate constraints)
 - Eliminate variables using constraint equations and solve a reduced problem $f(x^*)=0$
 - Not practical, except for simple problems
- Approach 2 (Penalty function)
 - Construct a new minimization function f(x)+Pg(x) where P>>1
 - If constraint is violated the minimization function increases rapidly, forcing the optimization routine to solutions where it is not violated
- Approach 3 (Lagrange Multipliers)
 - Solution has to lie on the surface of g(x)=0
 - Can't have $\nabla f = 0$ anymore
 - However we require ∇f parallel to $\nabla g = 0$

Lagrange Multipliers

Optimize f(x, y) subject to g(x, y) = k:

Necessary conditions for a solution at (\hat{x}, \hat{y}) :

 $\nabla f(\hat{x}, \hat{y})$ is parallel to $\nabla g(\hat{x}, \hat{y})$ and $g(\hat{x}, \hat{y}) = k$

$$\nabla f(\hat{x}, \hat{y}) = \lambda \nabla g(\hat{x}, \hat{y}) \text{ and } g(\hat{x}, \hat{y}) = k$$

$$\nabla f(\hat{x}, \hat{y}) - \lambda \nabla g(\hat{x}, \hat{y}) = 0$$
 and $g(\hat{x}, \hat{y}) = k$

Linear programming

- · Black box in this course
- · Solve problems with systems of linear equality and inequality constraints

The subject of linear programming, sometimes called linear optimization, concerns itself with the following problem: For N independent variables x_1, \ldots, x_N , maximize the function $z = a_{01}x_1 + a_{02}x_2 + \cdots + a_{0N}x_N \tag{10.8.1}$

subject to the primary constraints

 $x_1\geq 0,\quad x_2\geq 0,\quad \dots\quad x_N\geq 0 \qquad (10.8.2)$ and simultaneously subject to $M=m_1+m_2+m_3$ additional constraints, m_1 of them of the form $a_{i1}x_1 + a_{i2}x_2 + \dots + a_{iN}x_N \le b_i$ $(b_i \ge 0)$ $i = 1, \dots, m_1$ (10.8.3) m_2 of them of the form $a_{j1}x_1 + a_{j2}x_2 + \cdots + a_{jN}x_N \geq b_j \geq 0 \qquad j = m_1 + 1, \ldots, m_1 + m_2 \ \ (10.8.4)$ and m_3 of them of the form

 $a_{k1}x_1 + a_{k2}x_2 + \dots + a_{kN}x_N = b_k \ge 0$ $k = m_1 + m_2 + 1, \dots, m_1 + m_2 + m_3$ (10.8.5)