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» Cost functions (last class)
» Given a cost function we can calculate
— The global minimum
— A local minimum
» Algorithms can be classified according to
— Derivative information available/not available or expensive
« Derivatives via finite-differences
— Linear or nonlinear
— Local minimum or global minimum
— Differential or “statistical”
— Constrained or Unconstrained
» Read Chapter 10-0 of Numerical Recipes.
» Focus will not be on details but educated use of these
routines as black-boxes.

Bracketing methods in 1D

» Knowing the function value at 3 points bracket a minimum
« Find a better approximation to the minimum

— Golden bisection

— Parabola fitting

— Methods using derivative information
+ 1-D search methods important for multi-dimensional algorithms
* (Read Chapter 10-1 through 10-3 of Numerical Recipes)
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Bracketing a minimum in multiple dimensions

» Smallest region bounded by a group of points in
— 1D is bounded by two points (a line segment)
— 2D is bounded by three points (a triangle)
— 3D by four points (a tetrahedron)
— In ND by N+1 points (a simplex)

* Can find a direction of a decreasing function in
— 1D by the line from point with higher value to lower

— 2D by joining point with highest value through point with average
value on the opposite side of the triangle

— And so on for ND
» However cannot guarantee a bracket of a minimum in ND

Downbhill Simplex Method (Nelder-Mead)

+ Reflection: Project along the ———
direction of decrease with size 1. T

» Reflection and expansion:If
decrease is large try a step of %
size 2.
is bad, so try a simple reduction %
within simplex.

* Multiple contraction: If result of 4
contraction does not give a better
result than lowest point. 7

» Contraction: Result of reflection

» Conclude: volume of simplex
becomes below tolerance.

Basic calculus
* The direction of maximum increase of a function at a point
x is along VAx)
« Critical points of a function fare at df/dx=0 or Vf=0.
— One way of optimizing is to find x where V/=0
— However this can usually be done easily only in one dimension

* Taylor series df
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» Newton’s method for solving f{x)=0.
— Given f{x)#0 seek a correction, 4, to x, so that f(x+h)=0

f(x+h)=f(x)+hf’(x)=0 so that h:7f;(7.\0
S




Newton’s Method

If f(x) is a scalar valued function of n variables x
fx+h)=f(x +h)=f(x)+hf(x)=0

— No way to get n equations from one equation above

— Use steepest descent methods
However in optimization problems we are usually solving
for the minimum of a scalar valued function of multiple
variables f(x), where x is an n dimensional vector

— We need to solve an equation of the type g(x)= V/=0

— Same prescription works but now Vg is a matrix called the

Jacobian matrix P
g(x+h)=g,(x +h,):g,(x,)+h,a—/:0
xr

— Solve the equation to get corrections and iterate

However note that we are actually computing Hessian of f°

Gradient Descent

» We have a function f'and an estimate of its gradient Vf’
+ Decrease / by a quantity along the direction of Vf°
— Begin initialize x, tol, k=0
do k<-k+1
x x-h Vf
until h,V/<tol'
return x
end

* Determining h is not easy
— Called “learning rate” in Al

— Hard to determine h
« Ifh is too small algorithm will be
procedure will diverge >
 Can select it using a line search or using a Newton method.

Selecting step size in Gradient Descent
Recall SO+ = £ +h)= f()+hf(x)=0
We cannot get 4, in general

However we can minimize along a direction

— Restrict to the direction of V/. Let u be a vector in this direction

— Minimize the one dimensional function of 7, f{(x+tu) by using the
one dimensional minimization techniques discussed earlier.

— Recompute gradient at the new point and repeat the search in the
new direction

— Once ¢ values become small we have converged

— Each of the initial searches need not be performed with precision

Function Evaluations

» Often evaluating the function is hard
— Crash a car to measure a data point

 Analytical expressions for the derivatives are harder, and

very much prone to programming error.
— Analytical derivatives should always be compared with finite
difference estimates for accuracy

» Often derivatives are evaluated using finite differences.

— Recall = h!(f{x+h)-f(x)) => 2 function evaluations

— For an n dimensional function we need at least n+1/ function
evaluations to get the derivative

— However recall that this is the least accurate
» Promising research area: Use chain rule and semantic
parsing of functions to perform automatic differentiation

Powell’s method

Sometimes it is not possible
to estimate the derivative Vf
to obtain the direction in a
steepest descent method

First guess, minimize along
one coordinate axis, then
along other and so on.Repeat

Can be very slow to converge

Conjugate directions: Directions which are
independent of each other so that minimizing
along each one does not move away from the
minimum in the other directions.

Powell introduced a method to obtain conjugate
directions without computing the derivative.

More complex methods
» Function can be approximated locally near a point P as
S0 = (@) ¢ Z{f)’l_:v., Y {‘)i_”—{‘)’ﬂu..,,f, 4o
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+ Gradient of above equation Vf =A -x—b

+ Newton method set gradient equal zero and solveA - x = b

» Conjugate directions:
— Minimize along a direction u. In this case the change in V/ as x
changes by 8x is A. 8x
— Minimization in a new direction v should not modify our
previous minimization. Then v should be chosen so that v.Au=0

— Any two directions that satisfy v.Au=0 are called conjugate
directions.




Conjugate gradient and quasi-newton

Use the fact that there is a routine available to calculate
and the Jacobian V/ to calculate iteratively approaximations
to the minimum
— Conjugate gradients performs minimizations in conjugate
directions without constructing A
— Quasi Newton methods construct approximations to A~/ iteratively
Black boxes, as far as this course is concerned.

Generally only worth it when we are
in the vicinity of a minumum.
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Levenberg Marquardt
Return to problem of model , X [y — y(wi;a1...an)
fitting by minimizing = ; <—>
As before set Xz(a)zqffd-a+%a-D~a
Observation: steepest descent methods move faster (per

function evaluation) far away from the minimum while
Newton methods do well near it.

a;

Idea combine them so that the method adapts according to
the location in parameter space.

Usually for model fitting it is not too difficult to calculate
derivatives o
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Levenberg Marquardt

Newton Amin = Acur + D71 [~V (Aeur

Steepest Descent Aexs = Acur — cONStant X Vy?(acur)
10x? 1 9%y2

Define 6. =--2X and g = X

2 dax 2 dagoa M

Then the Newton equation becomes ;““ b = B

Can combine the two equations by defining a new o matrix
;L .

;= aji(14A) (J#k)

Vary A as the algorithm proceeds according to whether we

are near the solution or away from it.

! —
ajk = Oéjk

LM Algorithm

o Compute x2(a).

o Pick a modest value for A, say A = 0.001.

o (1) Solve the linear equations (15.5.14) for 6a and evaluate x?(a + 6a).

o If y%(a + 6a) >x?(a), increase \ by a factor of 10 (or any other
substantial factor) and go back to (f).

o If y*(a+ 6a) < y*(a), decrease A by a factor of 10, update the trial
solution a < a + da, and go back to (}).

» When the algorithm has converged set A=0 and
compute the final solution

Constrained optimization
We have to optimize f{x) subjéct to g(x)=0

— Makes sense if g(x)=0 leaves a few degrees of freedom (N-M)
Approach 1 (Eliminate constraints)

— Eliminate variables using constraint equations and solve a
reduced problem f{x*)=0

— Not practical, except for simple problems
Approach 2 (Penalty function)
— Construct a new minimization function f{x) +Pg(x) where P>>1

— If constraint is violated the minimization function increases
rapidly, forcing the optimization routine to solutions where it is
not violated

Approach 3 (Lagrange Multipliers)

— Solution has to lie on the surface of g(x)=0
— Can’t have Vf =0 anymore

— However we require V/ parallel to Vg=0

Lagrange Multipliers

Optimize f(x,y) subjectto g(x,y) = k:

Necessary conditions for a solution at (X, $):
Vf(&, 9) is parallel to Vg(&, ) and g(&, ) = k
Vf(&9) = AVe(&,9) and g(%, 9) = k

VF(£ $)-AVg(% 9) = 0 and g(%. 9) = k




Linear programming

Black box in this course

+ Solve problems with systems of linear equality and
inequality constraints

The subject of linear programming, sometimes called linear optini
concerns itself with the following problem: For N independent variables &,
maximize the function

ation,

aorz +agaa 4ok aonay (108.1)
subject to the primary constraints
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and simultancously subject to M = 1y + my + ms additional constraints, 1y of
them of the form

2y >0 (10.82)

anzy +apra ot ayey <b (5200 i=1...m (1083)
my of them of the form
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and m; of them of the form
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