Optimization - 1

CMSC828D Fundamentals of Computer Vision

- Inequality Constraints

Outline - II

- Other Metrics
 - Riemann Lebesgue lemma
 - Sobolev norms
- Statistical Cost Functions
 - Mahalanobis distance
 - Maximum Likelihood (ML), Expectation Maximization (EM) and Maximum a Posteriori (MAP)
- Robust Estimation
 - Outliers and Inliers
 - Median Estimators
 - RANSAC

 $A_{ii} \bullet (A_{ik} x_k - b_i) + (A_{ij} x_j - b_i) \bullet A_{ii} = 2 (A_{ii} A_{ik} x_k - A_{ii} b_i) = 0$

$A_{ii}A_{ik}x_k = A_{ii}b_i$ • Same as the solution of $\mathbf{A}^{t}\mathbf{A}\mathbf{x}=\mathbf{A}^{t}\mathbf{b}$

Optimization – Physical Cost Function

• Adjust parameters of a system or model to maximize or minimize something

- \$, Distance

- · Ideally there is a real cost being minimized
 - E.g. Dollars or distance travelled
 - Then each equation makes sense
- Airlines: minimize costs, crew movement and plane takeoffs and landings, subject to regulatory constraints
- Traders: maximize returns for a given level of risk
- Some other physically measurable quantity

Scaling

- Try to avoid anyone equation being overly represented.
- · Scale each equation
 - Scale by largest coefficient so that it becomes 1
 - a_{il}/a_{11}
 - Scale so that sum of coefficients is 1 $a_{11}^2 + a_{12}^2 + \dots + a_{1n}^2 = I$
- Scaling also has the benefit of avoiding round-off.

Weighted Least Squares

- Multiplying an equation by a number will increase its *weight* or *influence* in the cost function.
- Not always a bad thing
 - May want to weight different equations differently
- · How to select weights?
 - Number of observations
 - Reliability of measurement
 Measured variances
- How good is the least squares solution? How "probable" are the parameter estimates?
- Bring in notions of statistics

Maximum Likelihood Parameter Estimation

- *likelihood* of the parameters given the data
- Least squares fit is a "maximum likelihood estimator"
- Assume
 - $-y_i$ has a measurement error that is normally distributed around true $y \leftarrow x_i$. $\left[-\frac{1}{2}\left(\frac{y_i - y(x_i)}{\sigma}\right)^2\right]$
 - Assume errors are independent, and standard deviations σ of all these normal distributions are the same.
 - Then probability that the data set and the model predictions are within Δy the product of that of each other is

$$P \propto \prod_{i=1}^{N} \left\{ \exp\left[-\frac{1}{2} \left(\frac{y_i - y(x_i)}{\sigma} \right)^2 \right] \Delta y \right\}$$

• Maximize likelihood that parameters are correct by maximizing *P* with respect to model parameters.

Cost functions for image data

- Errors in both images
 Find H[^] that minimizes Σ_i d(x'_i, H[^]x_i)²+ d(H^{^-1}x'_i, x_i)²
- Reprojection error
 - Instead of determining parameters of a transformation that minimizes distances on erroneous data, find corrections to the wrong data and find the transformation that maps corrected data.
 - Get estimates \mathbf{x}^{\wedge} and $\mathbf{x}^{\prime \wedge}$ such that $\Sigma_j d(\mathbf{x}_j, \mathbf{x}_j)^2 + d(\mathbf{x}'_j, \mathbf{x}_j)^2$ subject to $\mathbf{H}^{\wedge} \mathbf{x}_j = \mathbf{x}'_j$

Optimization Techniques

- Different problem here
- Given a set of locations \mathbf{x}_i where one has measured a fitness function $\chi^{\rho}/f \mathbf{x} find$ a vector of parameters $-\mathbf{x} that$ minimizes it
- For the case where the function was linear we already have methods such as SVD to solve the linear system>
- Here we are concerned with systems where the equation is not so simple>
- In particular f may be a nonlinear function of parameters **x** Differential calculus provides us with ways of estimating extremation
- The minimum \leftarrow max \leftarrow of foccurs at $\nabla f / o^{\circ}$ or
- $-\nabla f \text{ is in the direction of increasing } f \text{ or}$
- Given an interval ∇f has opposite signs at the boundary there must be a point inside where ∇f must be zero
- However calculus is local
- So these methods can only guarantee a local extremum

