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» Algebraic distance
— Deéfinition
— Problems
— Scaling and Normalization
 Different ways of computing the Cost function
— Errorsin both coordinates
— Transfer Error and Reprojection Error
e “Physics/Geometry” based distances
— General Examples
— Examplesin Vision
» Constraints
— Equality constraints
« Lagrange multipliers and Penalty function methods
— Inequality Constraints
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e Other Metrics

— Riemann Lebesgue lemma

— Sobolev norms
e Statistical Cost Functions

— Mahalanobis distance

— Maximum Likelihood (ML), Expectation Maximization

(EM) and Maximum a Posteriori (MAP)

* Robust Estimation

— Outliersand Inliers

— Median Estimators

— RANSAC

Typical Optimization Problems
* Model fitting
— Fitastraight line or polynomial through data
V=5 aX,
— Fit asum of cosines, exponentials etc.
¥i= 2% 8 (%)
Model ¢ s, parameters a;s data (x;,Y;)
 Determine atransformation
— Determine a homography matrix
X = Hx H

— Determine the fundamental matrix . .
X'Fx =0

L east Squares

Look for asolution to a linear system of equations
Ax=b

Number of equations and unknowns need not match

Look for solution by minimizing |JAx - b||

— minimize the distance between the vectors Ax and b

Differetg%i ate (Ap4-by). (Auxy) with respect to x,

Recall &zd\ i(AX -8 )+(Ax -b) =
o A% WX -B) =0
(A6;)*(Ax =) +(A X -b)«(A,) =0
A+(AX ) +(AX -b)-A =2(AAX-Al)=0
A AX = Ab

Same as the solution of A'Ax=A'b

Optimization — Physical Cost Function
Adjust parameters of a system or model to maximize or
minimize something

— $, Distance

Ideally thereisareal cost being minimized

— E.g. Dollars or distance travelled

— Then each equation makes sense

Airlines: minimize costs, crew movement and plane
takeoffs and landings, subject to regulatory constraints

Traders: maximize returns for a given level of risk
Some other physically measurable quantity




Algebraic Distance

* Algebraic syssemAx =b
Approximate solution x/
* Residual ||A X' - b]|

» Residual isalso called
algebraic distance
Algorithms that seek to
reduce the residual are
called “minimum
residual” algorithms

Properties of the Algebraic Distance

» Each row in alinear equation can be multiplied
by an arbitrary number
X 8%, + 8%+ A X, =b
isthesameas
C(ay X, + 85X, + 85X + -+ 8y, X, ) =y
However given an approximate solution X
a11ax-1+a12;(~2+313$(~3+"'+ain§n_b1
isnot the sameas

C(ay, X, +ay,%, + X+ +a, X, —b)

Scaling
« Try to avoid anyone equation being overly represented.
« Scale each equation
— Scale by largest coefficient so that it becomes 1
afay
— Scale so that sum of coefficientsis 1
a2+ a2+ + a =1

¢ Scaling also has the benefit of avoiding round-off.

Weighted Least Squares

« Multiplying an equation by a number will increase its
weight or influencein the cost function.
» Not always abad thing
— May want to weight different equations differently
« How to select weights?
— Number of observations
— Reliability of measurement
* Measured variances
* How good isthe least squares solution? How “probable”
are the parameter estimates?

¢ Bringin notions of statistics

Maximum Likelihood Parameter Estimation

likelihood of the parameters given the data
Least squares fit isa“maximum likelihood estimator”

Assume
— g, has ameasurement error that is exp [,_ (11 *1/("")) }
normally distributed around true y<x). . 2 4
— Assume errors are independent, and standard deviations o of all
these normal distributions are the same.
— Then probability that the data set and the model predictions are
within Ay the product of that of each other is

o 1y —y@))?
P x ’1:[‘ {cxp ) (T) Ay

Maximize likelihood that parameters are correct by
maximizing P with respect to model parameters.

Least Squares= MLE

Since logarithm is amonotonic increasing function maximum of log

Pisthemaximumof P » [
logP = [Z. Taer | T Nlegay

*Maximizing log P is equivalent to maximizing the least squares

criterion (y;-y(x))? since the other terms are constants

*What to do when variances are not all the same?

*Maximize the Mahalanobis distance
N

2
o _ Yi —y(zi3a1...an)
¢y (L)

i=1
*Here the errors were just assumed to be in the measured ys




Errorsin both coordinates

Often in computer vision measurements are made in both

images and a relationship between them must be deduced.

Consider the line fit example again

— Intuitively distances should be perpendicular to the line

« Perpendicular distance between y
point (x , y;) and aliney-a-bx=0is

(y-a-bxy "

1+b?

e Ifx andy; aredistributed

normally with standard deviations

0,, and o,,we can show that ¢

18

N P
— (yi —a — bx;)?

b =3 y )
i=1

2 2 52
Uw+b o2,

d(x,y.:a,b){

Makes the cost function nonlinear in parameters

« Nonlinear in b. In general physical error functions are nonlinear.

Cost functions for image based data

» Notation
— Measured value of apoint x~
— True value of apoint x
— Estimated value of a point x*
— Transformation or model is denoted H
* Model y=H(x) and x=H(y)
e Symmetric error functions
— Case 1: Error only in oneimage

« Could arise if we are imaging a caibration pattern with known
coordinates and trying to determine camera calibration

— Appropriate error function is
Find H" that minimizes % d(x~,H"x")?

Cost functions for image data

« Errorsin both images
Find H" that minimizes % d(x';H"x")2+ d(H" "X’ 7, x7)?
* Reprojection error
— Instead of determining parameters of a
transformation that minimizes distances on
erroneous data, find corrections to the wrong
data and find the transformation that maps
corrected data.
— Get estimates x" and x”* such that
Zd(x, % "2+ d(x, X;")? subject to H™X; "= X}
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Optimization Techniques

Different problem here

— Given aset of locations x; where one has measured a fitness function
X/ /—x— find a vector of parameters —x— that minimizes it

Bisection methods

Given afunction f at three points a,b,c with [a<b<c], and a

way to evaluatef at a new point
— Given 2 initial guesses f(a) and f(b), if f(a)>f(b) movein the

For the case where the function was linear we already have

methods such as SVD to solve the linear system>

Here we are concerned with systems where the equation is

not so simple>

— In particular fmay be a nonlinear function of parameters x

Differential calculus provides us with ways of estimating

extremar>

— The minimum —max— of foccurs at V /[ oc or

direction ato b and choose a new parameter c.

— Find atriplet [a,b,c] so

that and f(c)>f(b)
and f(a)>f(b)

— Choose a new point

between a and b
orbandc

®

— V/ is in the direction of increasing /< or
— Given an interval V fhas opposite signs at the boundary there must
be a point inside where V fmust be zero

Howewver calculus is local

— So these methods can only guarantee a local extremum

— Repeat until the
pointsa, band c o
are sufficiently
close




Paraboloic bracketing

_______ parabola through (1) (2)(3)
- parabola through (1) (2) (3)

Figure 10.2.1. C
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hthe 12, “The function s evaluated
at the parabola’s minimum, 4. which replaces point 3. A new parabola (dotted line) s drawn through
points 1,4,2. The minimum of this parabola is at 5, which is close o the minimum of the function,




