

## Outline - I

- Algebraic distance
- Definition
- Problems
- Scaling and Normalization
- Different ways of computing the Cost function
- Errors in both coordinates
- Transfer Error and Reprojection Error
- "Physics/Geometry" based distances
- General Examples
- Examples in Vision
- Constraints
- Equality constraints
- Lagrange multipliers and Penalty function methods
- Inequality Constraints


## Typical Optimization Problems

- Model fitting
Model fitting
- Fit a straight line or polynomial through data

$$
y_{i}=\Sigma_{j} a_{j} x_{i}^{j}
$$

- Fit a sum of cosines, exponentials etc.

$$
y_{i}=\Sigma_{j} a_{j} \phi_{j}\left(x_{i}\right)
$$

Model $\phi_{j} \mathrm{~s}$, parameters $a_{j} \mathrm{~s}$ data $\left(x_{i}, y_{i}\right)$

- Determine a transformation
- Determine a homography matrix

$$
\mathbf{x}^{\prime}=\mathbf{H x}
$$

- Determine the fundamental matrix
$\mathbf{x}^{\prime} \mathbf{t} \mathbf{F x}=0$



## Least Squares

- Look for a solution to a linear system of equations $\mathbf{A x}=\mathbf{b}$
- Number of equations and unknowns need not match
- Look for solution by minimizing $\| \mathbf{A x}$ - b $\|$
- minimize the distance between the vectors $\mathbf{A x}$ and $\mathbf{b}$
- Differentiate $\left(A_{i j} x_{j}-b_{i}\right) \cdot\left(A_{i k} x_{k}-b_{i}\right)$ with respect to $x_{l}$
- Recall $\frac{\partial x_{i}}{\partial x_{l}}=\delta_{i l} \frac{\partial}{\partial x_{l}}\left(A_{i j} x_{j}-b_{i}\right) \cdot\left(A_{i k} x_{k}-b_{i}\right)=0$
$\left(A_{i j} \delta_{j l}\right) \cdot\left(A_{i k} x_{k}-b_{i}\right)+\left(A_{i j} x_{j}-b_{i}\right) \cdot\left(A_{i k} \delta_{k l}\right)=0$
$A_{i l} \cdot\left(A_{i k} x_{k}-b_{i}\right)+\left(A_{i j} x_{j}-b_{i}\right) \cdot A_{i l}=2\left(A_{i l} A_{i k} x_{k}-A_{i j} b_{i}\right)=0$
$A_{i l} A_{i k} x_{k}=A_{i l} b_{i}$
- Same as the solution of $\mathbf{A}^{t} \mathbf{A x}=\mathbf{A}^{t} \mathbf{b}$


## Optimization - Physical Cost Function

- Adjust parameters of a system or model to maximize or minimize something
- \$, Distance
- Ideally there is a real cost being minimized
- E.g. Dollars or distance travelled
- Then each equation makes sense
- Airlines: minimize costs, crew movement and plane takeoffs and landings, subject to regulatory constraints
- Traders: maximize returns for a given level of risk
- Some other physically measurable quantity


## Algebraic Distance

- Algebraic system $\mathbf{A x}=\mathbf{b}$
- Approximate solution $\mathbf{x}^{\prime}$
- Residual $\| \mathbf{A} \mathbf{x}^{\prime}$ - b $\|$
- Residual is also called algebraic distance
- Algorithms that seek to reduce the residual are called "minimum residual" algorithms



## Scaling

- Try to avoid anyone equation being overly represented.
- Scale each equation
- Scale by largest coefficient so that it becomes 1
$a_{i l} / a_{11}$
- Scale so that sum of coefficients is 1

$$
a_{11}^{2}+a_{12}^{2}+\ldots+a_{1 n}^{2}=1
$$

- Scaling also has the benefit of avoiding round-off.


## Maximum Likelihood Parameter Estimation

- likelihood of the parameters given the data
- Least squares fit is a "maximum likelihood estimator"
- Assume

$$
\begin{aligned}
& -y_{i} \text { has a measurement error that is } \\
& \text { normally distributed around true } y \leftharpoonup x) \text {. }
\end{aligned}
$$

- Assume errors are independent, and standard deviations $\sigma$ of all these normal distributions are the same.
- Then probability that the data set and the model predictions are within $\Delta y$ the product of that of each other is

$$
P \propto \prod_{i=1}^{N}\left\{\exp \left[-\frac{1}{2}\left(\frac{y_{i}-y\left(x_{i}\right)}{\sigma}\right)^{2}\right] \Delta y\right\}
$$

- Maximize likelihood that parameters are correct by maximizing $P$ with respect to model parameters.


## Properties of the Algebraic Distance

- Each row in a linear equation can be multiplied by an arbitrary number

$$
a_{11} x_{1}+a_{12} x_{2}+a_{13} x_{3}+\cdots+a_{1 n} x_{n}=b_{1}
$$

is the same as
$c\left(a_{11} x_{1}+a_{12} x_{2}+a_{13} x_{3}+\cdots+a_{1 n} x_{n}\right)=c b_{1}$
However given an approximate solution $\tilde{\mathbf{x}}$
$a_{11} \tilde{x}_{1}+a_{12} \tilde{x}_{2}+a_{13} \tilde{x}_{3}+\cdots+a_{1 n} \tilde{x}_{n}-b_{1}$
is not the same as
$c\left(a_{11} \tilde{x}_{1}+a_{12} \tilde{x}_{2}+a_{13} \tilde{x}_{3}+\cdots+a_{1 n} \tilde{x}_{n}-b_{1}\right)$

## Weighted Least Squares

- Multiplying an equation by a number will increase its weight or influence in the cost function.
- Not always a bad thing
- May want to weight different equations differently
- How to select weights?
- Number of observations
- Reliability of measurement
- Measured variances
- How good is the least squares solution? How "probable" are the parameter estimates?
- Bring in notions of statistics


## Errors in both coordinates

- Often in computer vision measurements are made in both images and a relationship between them must be deduced
- Consider the line fit example again
- Intuitively distances should be perpendicular to the line
- Perpendicular distance between $\uparrow y$ point $\left(x_{i}, y_{i}\right)$ and a line $y-a-b x=0$ is

$$
d\left(x_{i}, y_{i} ; a, b\right)=\left[\frac{\left(y_{i}-a-b x_{i}\right)^{2}}{1+b^{2}}\right]^{1 / 2}
$$

- If $x_{i}$ and $y_{i}$ are distributed normally with standard deviations $\sigma_{x i}$ and $\sigma_{y i}$ we can show that $c$ $\chi^{2}(a, b)=\sum_{i=1}^{N} \frac{\left(y_{i}-a-b x_{i}\right)^{2}}{\sigma_{y i}^{2}+b^{2} \sigma_{x i}^{2}}$

- Makes the cost function nonlinear in parameters
- Nonlinear in $b$. In general physical error functions are nonlinear.


## Cost functions for image data

- Errors in both images

Find $\mathbf{H}^{\wedge}$ that minimizes $\Sigma_{j} \mathrm{~d}\left(\mathbf{x}_{j}{ }_{j}{ }^{-}, \mathbf{H}^{\wedge} \mathbf{x}_{j}^{\sim}\right)^{2}+\mathrm{d}\left(\mathbf{H}^{\wedge}{ }^{-l} \mathbf{x}^{\prime}{ }_{j}{ }_{j}, \mathbf{x}_{j}{ }^{-}\right)^{2}$

- Reprojection error
- Instead of determining parameters of a transformation that minimizes distances on erroneous data, find corrections to the wrong data and find the transformation that maps corrected data.
- Get estimates $\mathbf{x}^{\wedge}$ and $\mathbf{x}^{\prime \wedge}$ such that

$$
\Sigma_{j} \mathrm{~d}\left(\mathbf{x}_{j}^{\sim}, \mathbf{x}_{j}^{\wedge}\right)^{2}+\mathrm{d}\left(\mathbf{x}_{j}^{\prime} \tilde{j}, \mathbf{x}_{j}^{\wedge}\right)^{2} \text { subject to } \mathbf{H}^{\wedge} \mathbf{x}_{j}^{\wedge}=\mathbf{x}_{j}^{\prime}
$$

## Cost functions for image based data

- Notation
- Measured value of a point $\mathbf{x}^{-}$
- True value of a point $\mathbf{x}$
- Estimated value of a point $\mathbf{x}^{\wedge}$
- Transformation or model is denoted H - Model $\mathbf{y}=\mathrm{H}(\mathbf{x})$ and $\mathbf{x}=\mathrm{H}^{-1}(\mathbf{y})$
- Symmetric error functions
- Case 1: Error only in one image
- Could arise if we are imaging a calibration pattern with known coordinates and trying to determine camera calibration
- Appropriate error function is

$$
\text { Find } \mathbf{H}^{\wedge} \text { that minimizes } \quad \sum_{j} \mathrm{~d}\left(\mathbf{x}^{\prime}{ }_{j}, \mathbf{H}^{\wedge} \mathbf{x}_{j}^{\sim}\right)^{2}
$$



## Bisection methods

Given a function $f$ at three points $a, b, c$ with $[a<b<c]$, and a way to evaluate $f$ at a new point

- Given 2 initial guesses $f(a)$ and $f(b)$, if $f(a)>f(b)$ move in the
direction $a$ to $b$ and choose a new parameter $c$.
- Find a triplet $[a, b, c]$ so that and $f(c)>f(b)$ and $f(a)>f(b)$
- Choose a new point between $a$ and $b$ or $b$ and $c$
- Repeat until the points $a, b$ and $c$ are sufficiently
 - Ge a point inside where $\nabla$ fmust be zero
- However calculus is local
- So these methods can only guarantee a local extremum
close




