Optimization - 1

CMSC828D
Fundamentals of Computer Vision

Outline - I

- Algebraic distance
 - Definition
 - Problems
 - Scaling and Normalization
- Different ways of computing the Cost function
 - Errors in both coordinates
 - Transfer Error and Reprojection Error
- "Physics/Geometry" based distances
 - General Examples
 - Examples in Vision
- Constraints
 - Equality constraints
 - Lagrange multipliers and Penalty function methods
 - Inequality Constraints

Outline - II

- Other Metrics
 - Riemann Lebesgue lemma
 - Sobolev norms
- Statistical Cost Functions
 - Mahalanobis distance
 - Maximum Likelihood (ML), Expectation Maximization (EM) and Maximum a Posteriori (MAP)
- Robust Estimation
 - Outliers and Inliers
 - Median Estimators
 - RANSAC

Typical Optimization Problems

- Model fitting
 - Fit a straight line or polynomial through data

$$y_i = \sum_j a_j x^j_i$$

- Fit a sum of cosines, exponentials etc.

$$y_i = \Sigma_j a_j \phi_j(x_i)$$

Model ϕ_i s, parameters a_i s data (x_i, y_i)

Determine a homography matrix

$$\mathbf{x}' = \mathbf{H}\mathbf{x}$$

Determine the fundamental matrix

$$\mathbf{x't}\mathbf{F}\mathbf{x} = 0$$

Least Squares

Look for a solution to a linear system of equations
 Ax=b

- Number of equations and unknowns need not match
- Look for solution by minimizing $||\mathbf{A}\mathbf{x} \mathbf{b}||$
 - minimize the distance between the vectors **Ax** and **b**
- Differentiate $(A_{ij}x_j-b_i).(A_{ik}x_k-b_i)$ with respect to x_l
- Recall $\frac{\partial x_i}{\partial x_l} = \delta_{il}$ $\frac{\partial}{\partial x_l} (A_{ij}x_j b_i) \cdot (A_{ik}x_k b_i) = 0$ $(A_{ij}\delta_{jl}) \cdot (A_{ik}x_k b_i) + (A_{ij}x_j b_i) \cdot (A_{ik}\delta_{kl}) = 0$ $A_{il} \cdot (A_{ik}x_k b_i) + (A_{ij}x_j b_i) \cdot A_{il} = 2(A_{il}A_{ik}x_k A_{il}b_i) = 0$ $A_{il}A_{ik}x_k = A_{il}b_i$
- Same as the solution of $A^tAx = A^tb$

Optimization – Physical Cost Function

- Adjust parameters of a system or model to maximize or minimize something
 - \$, Distance
- Ideally there is a real cost being minimized
 - E.g. Dollars or distance travelled
 - Then each equation makes sense
- Airlines: minimize costs, crew movement and plane takeoffs and landings, subject to regulatory constraints
- Traders: maximize returns for a given level of risk
- Some other physically measurable quantity

Algebraic Distance

- Algebraic system $\mathbf{A}\mathbf{x} = \mathbf{b}$
- Approximate solution \mathbf{x}'
- Residual $\|\mathbf{A} \mathbf{x}' \mathbf{b}\|$
- Residual is also called algebraic distance
- Algorithms that seek to reduce the residual are called "minimum residual" algorithms

Properties of the Algebraic Distance

 Each row in a linear equation can be multiplied by an arbitrary number

$$a_{11}x_1 + a_{12}x_2 + a_{13}x_3 + \dots + a_{1n}x_n = b_1$$

is the same as

$$c(a_{11}x_1 + a_{12}x_2 + a_{13}x_3 + \dots + a_{1n}x_n) = cb_1$$

However given an approximate solution $\tilde{\mathbf{x}}$

$$a_{11}\widetilde{x}_1 + a_{12}\widetilde{x}_2 + a_{13}\widetilde{x}_3 + \dots + a_{1n}\widetilde{x}_n - b_1$$

is not the same as

$$c(a_{11}\widetilde{x}_1 + a_{12}\widetilde{x}_2 + a_{13}\widetilde{x}_3 + \dots + a_{1n}\widetilde{x}_n - b_1)$$

Scaling

- Try to avoid anyone equation being overly represented.
- Scale each equation
 - Scale by largest coefficient so that it becomes 1

$$a_{i1}/a_{11}$$

Scale so that sum of coefficients is 1

$$a_{11}^2 + a_{12}^2 + \dots + a_{1n}^2 = 1$$

Scaling also has the benefit of avoiding round-off.

Weighted Least Squares

- Multiplying an equation by a number will increase its *weight* or *influence* in the cost function.
- Not always a bad thing
 - May want to weight different equations differently
- How to select weights?
 - Number of observations
 - Reliability of measurement
 - Measured variances
- How good is the least squares solution? How "probable" are the parameter estimates?
- Bring in notions of statistics

Maximum Likelihood Parameter Estimation

- likelihood of the parameters given the data
- Least squares fit is a "maximum likelihood estimator"
- Assume
 - y_i has a measurement error that is normally distributed around true $y \leftarrow x$). $\left[-\frac{1}{2} \left(\frac{y_i y(x_i)}{\sigma} \right)^2 \right]$.
 - Assume errors are independent, and standard deviations σ of all these normal distributions are the same.
 - Then probability that the data set and the model predictions are within Δy the product of that of each other is

$$P \propto \prod_{i=1}^{N} \left\{ \exp \left[-\frac{1}{2} \left(\frac{y_i - y(x_i)}{\sigma} \right)^2 \right] \Delta y \right\}$$

• Maximize likelihood that parameters are correct by maximizing *P* with respect to model parameters.

Least Squares = MLE

•Since logarithm is a monotonic increasing function maximum of log

P is the maximum of P $\log P = \left[\sum_{i=1}^{N} \frac{[y_i - y(x_i)]^2}{2\sigma^2} \right] - N \log \Delta y$

- •Maximizing log P is equivalent to maximizing the least squares criterion $(y_i-y(x_i))^2$ since the other terms are constants
- •What to do when variances are not all the same?
 - •Maximize the Mahalanobis distance

$$\chi^2 \equiv \sum_{i=1}^N \left(\frac{y_i - y(x_i; a_1 \dots a_M)}{\sigma_i} \right)^2$$

•Here the errors were just assumed to be in the measured ys

Errors in both coordinates

- Often in computer vision measurements are made in both images and a relationship between them must be deduced.
- Consider the line fit example again
 - Intuitively distances should be perpendicular to the line
- Perpendicular distance between point (x_i, y_i) and a line y-a-bx=0 is

$$d(x_i, y_i; a, b) = \left[\frac{(y_i - a - bx_i)^2}{1 + b^2} \right]^{1/2}$$

• If x_i and y_i are distributed normally with standard deviations σ_{xi} and σ_{yi} we can show that c $is \\ \chi^2(a,b) = \sum_{i=1}^N \frac{(y_i - a - bx_i)^2}{\sigma_{y_i}^2 + b^2 \sigma_{x_i}^2}$

- Makes the cost function nonlinear in parameters
 - Nonlinear in b. In general physical error functions are nonlinear.

Cost functions for image based data

Notation

- Measured value of a point x[~]
- True value of a point x
- Estimated value of a point x[^]
- Transformation or model is denoted H
 - Model y=H(x) and $x=H^{-1}(y)$
- Symmetric error functions
 - Case 1: Error only in one image
 - Could arise if we are imaging a calibration pattern with known coordinates and trying to determine camera calibration
 - Appropriate error function is

Find **H**[^] that minimizes
$$\Sigma_j d(\mathbf{x'}^{-}_j, \mathbf{H}^{-}\mathbf{x}_j^{-})^2$$

Cost functions for image data

- Errors in both images Find \mathbf{H}^{\wedge} that minimizes $\Sigma_{j} d(\mathbf{x'}_{j}, \mathbf{H}^{\wedge} \mathbf{x}_{j})^{2} + d(\mathbf{H}^{\wedge} - l \mathbf{x'}_{j}, \mathbf{x}_{j})^{2}$
- Reprojection error
 - Instead of determining parameters of a transformation that minimizes distances on erroneous data, find corrections to the wrong data and find the transformation that maps corrected data.
 - Get estimates $\mathbf{x}^{\hat{}}$ and $\mathbf{x'}^{\hat{}}$ such that $\Sigma_{j} d(\mathbf{x}_{j}^{\hat{}}, \mathbf{x}_{j}^{\hat{}})^{2} + d(\mathbf{x'}_{j}^{\hat{}}, \mathbf{x}_{j}^{\hat{}})^{2} \text{ subject to } \mathbf{H}^{\hat{}}\mathbf{x}_{j}^{\hat{}} = \mathbf{x'}_{j}$

Fig. 3.2. A comparison between symmetric transfer error (upper) and reprojection error (lower) when estimating a homography. The points \mathbf{x} and \mathbf{x}' are the measured (noisy) points. Under the estimated homography the points \mathbf{x}' and $H\mathbf{x}$ do not correspond perfectly (and neither do the points \mathbf{x} and $H^{-1}\mathbf{x}'$). However, the estimated points, $\hat{\mathbf{x}}$ and $\hat{\mathbf{x}}'$, do correspond perfectly by the homography $\hat{\mathbf{x}}' = H\hat{\mathbf{x}}$. Using the notation $d(\mathbf{x}, \mathbf{y})$ for the Euclidean image distance between \mathbf{x} and \mathbf{y} , the symmetric transfer error is $d(\mathbf{x}, H^{-1}\mathbf{x}')^2 + d(\mathbf{x}', H\mathbf{x})^2$; the reprojection error is $d(\mathbf{x}_i, \hat{\mathbf{x}}_i)^2 + d(\mathbf{x}'_i, \hat{\mathbf{x}}'_i)^2$.

Optimization Techniques

- Different problem here
 - Given a set of locations \mathbf{x}_i where one has measured a fitness function $\chi^2/f \mathbf{x} find \ a \ vector \ of \ parameters \mathbf{x} that \ minimizes \ it$
- For the case where the function was linear we already have methods such as SVD to solve the linear system>
- Here we are concerned with systems where the equation is not so simple>
 - In particular f may be a nonlinear function of parameters x
- Differential calculus provides us with ways of estimating extrema>
 - The minimum \leftarrow max \leftarrow of foccurs at $\nabla f/$ or or
 - ∇f is in the direction of increasing f or
 - Given an interval ∇f has opposite signs at the boundary there must be a point inside where ∇f must be zero
- However calculus is local
 - So these methods can only guarantee a local extremum

Bisection methods

- Given a function f at three points a,b,c with [a < b < c], and a way to evaluate f at a new point
 - Given 2 initial guesses f(a) and f(b), if f(a)>f(b) move in the direction a to b and choose a new parameter c.
 - Find a triplet [a,b,c] so that and f(c)>f(b) and f(a)>f(b)
 - Choose a new point between a and b
 or b and c
 - Repeat until the points a, b and c are sufficiently close

Figure 10.1.1. Successive bracketing of a minimum. The minimum is originally bracketed by points 1,3,2. The function is evaluated at 4, which replaces 2; then at 5, which replaces 1; then at 6, which replaces 4. The rule at each stage is to keep a center point that is lower than the two outside points. After the steps shown, the minimum is bracketed by points 5,3,6.

Paraboloic bracketing

Figure 10.2.1. Convergence to a minimum by inverse parabolic interpolation. A parabola (dashed line) is drawn through the three original points 1,2,3 on the given function (solid line). The function is evaluated at the parabola's minimum, 4, which replaces point 3. A new parabola (dotted line) is drawn through points 1,4,2. The minimum of this parabola is at 5, which is close to the minimum of the function.