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Algebraic distance

— Definition

— Problems

— Scaling and Normalization

Different ways of computing the Cost function
— Errorsin both coordinates
— Transfer Error and Reprojection Error

“Physics/Geometry” based distances
— General Examples

— Examplesin Vision

Constraints

— Equality constraints
« Lagrange multipliers and Penalty function methods

— Inequality Constraints
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e Other Metrics
— Riemann Lebesgue lemma
— Sobolev norms

e Statistical Cost Functions
— Mahalanobis distance

— Maximum Likelihood (ML), Expectation Maximization
(EM) and Maximum a Posteriori (MAP)

* Robust Estimation
— Qutliersand Inliers
— Median Estimators
— RANSAC



Typical Optimization Problems

e Modédl fitting
— Fit astraight line or polynomial through data
yi:Zj' a] in o
— Fit asum of cosines, exponentials etc. co

V=2 a ¢(x) g >
Model ¢ s, parameters a;s data (x;,Y;) O\%\
o Determine atransformation
— Determine a homography matrix
X = HX H
— Determine the fundamental matrix . \. ,
XtFx =0




| east Squares

L ook for a solution to alinear system of equations
AX=Db
Number of equations and unknowns need not match

L ook for solution by minimizing ||AX - b]|
— minimize the distance between the vectors Ax and b

Ditferentiate (A;X-b;).(AyX-b;) with respect to x

oX
Recall ==6, |

X 3 (A% B (A ) =0
(A0, ) (A -B) + (A X -B)+(Ay) =0
A(Ax =)+ (A X - )A =2(AAX-Ab)=0
A AX =Ab
Same as the solution of A'Ax=ADb



Optimization — Physical Cost Function
Adjust parameters of a system or model to maximize or
minimize something

— $, Distance

|deally thereis areal cost being minimized

— E.g. Dallars or distance travelled
— Then each equation makes sense

Airlines: minimize costs, crew movement and plane
takeoffs and landings, subject to regulatory constraints

Traders: maximize returns for agiven level of risk
Some other physically measurable quantity



Algebraic Distance

Algebraic system Ax =Db
Approximate solution x’
Residua ||A X' - b||
Residual isalso called
algebraic distance

Algorithms that seek to
reduce theresidual are
caled “minimum

y

residual” algorithms



Properties of the Algebraic Distance

« Each row in alinear equation can be multiplied
by an arbitrary number

A X A X, T X+ -+ X, :bl
ISthesameas

Clay X +apX, + X, +---+ay, X, ) =cby
However given an approxi mate solution X
a11)?1+312)?2+a13)?3+"'+ain)?n _bl
ISNot thesameas

C(ail)?l T a12)~(2 T a13)~(3 Tt a1n~n _ bl)



Scaling
* Try to avoid anyone equation being overly represented.

« Scale each equation
— Scale by largest coefficient so that it becomes 1
a/ay;
— Scale so that sum of coefficientsis 1
Q. °t+ a,’t...+ a,2=1

« Scaling also has the benefit of avoiding round-off.



Welghted L east Squares

Multiplying an equation by a number will increase its
weight or influence in the cost function.

Not always a bad thing
— May want to weight different equations differently

How to select weights?
— Number of observations

— Reliability of measurement
 Measured variances

How good is the least squares solution? How “ probabl e’
are the parameter estimates?

Bring in notions of statistics



Maximum Likelithood Parameter Estimation

* likelihood of the parameters given the data

o Least squaresfitisa“maximum likelthood estimator”
e Assume

— y,hasameasurement error that is 'exp [1 (y — y(zi) ) i
normally distributed around true y<—x). o

2
— Assume errors are independent, and standard deviations o of all
these normal distributions are the same.

— Then probability that the data set and the model predictions are
within Ay the product of that of each other is
Ay}

_% (’yz —5(%))2

« Maximize likelihood that parameters are correct by
maximizing P with respect to model parameters.




Least Squares = MLE

«Since logarithm is a monotonic increasing function maximum of |og

Pisthemaximumof P - e — g )]?
logP = [Z 202 } — Nlogay

Maximizing log P is equivalent to maximizing the least squares

criterion (y:-y(x))? since the other terms are constants

*\What to do when variances are not all the same?

M aximize the Mahalanobis distance
N

2
y; —y(xi;ar...an)
O

=1
*Here the errors were just assumed to be in the measured ys

7;:




Errorsin both coordinates

e Often in computer vision measurements are made in both
Images and arelationship between them must be deduced.

e Consider the line fit example again
— Intuitively distances should be perpendicular to the line
« Perpendicular distance between y

point (X, y;) and aliney-a-bx=01s

d(x,yi:a,lo){< —a-bx) }

1+ b?
e Ifx andy; aredistributed
normally with standard deviations

o,, and o, we can show that ¢
18 N 2
i —a — bx;
x*(a,b) = ) W )

2 2 2
— o, T b%oy,

« Makesthe cost function nonlinear in parameters
* Nonlinear in b. In genera physical error functions are nonlinear.




Cost functions for Image based data

« Notation
— Measured value of apoint x-
— True value of apoint x
— Estimated value of a point x"
— Transformation or model is denoted H
e Moded y=H(x) and x=H-(y)
e Symmetric error functions

— Case 1. Error only in one image

e Could arise if we areimaging a calibration pattern with known
coordinates and trying to determine camera calibration

— Appropriate error function is
Find H" that minimizes X d(x™;,H"%,")?



Cost functions for Image data

e Errorsin both images
Find H" that minimizes 2 d(x’;~,H"x,")%+ d(H" -IX’ 7, X,7)?
e Reprojection error
— Instead of determining parameters of a
transformation that minimizes distances on
erroneous data, find corrections to the wrong

data and find the transformation that maps
corrected data.

— Get estimates x” and x”* such that

2 d(x7, % ") d(X7, X")? subject to HX, "= X',
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Fig. 3.2. A comparison between symmetric transfer error (upper) and reprojection error
(lower) when estimating a homography. The points x and x' are the measured (noisy) points.
Under the estimated homography the points x' and Hx do not correspond perfectly (and
neither do the points X and H™'x’). However, the estimated points, X and %', do correspond
perfectly by the homography x' = Hx. Using the notation d(x,y) for the Fuclidean image
distance between x and y, the symmelric transfer error is d(x,H™1x')? + d(x',Hx)?; the
reprojection error is d(x;, %;)% + d(x}, %)%



Optimization Techniques

Different problem here

— Given aset of locations x; where one has measured a fitness function
Y/ f—x— find a vector of parameters —x~— that minimizes it

For the case where the function was linear we already have
methods such as SVD to solve the linear systemp>

Here we are concerned with systems where the equation 1is
not so stmpler>

— In particular /may be a nonlinear function of parameters x

Di f ferential calculus provides us with ways of estimating
extremar

— The minimum —max— of foccurs at V f/ o< or

— V. / 15 in the direction of increasing /< or

— Gwen an interval V fhas opposite signs at the boundary there must
be a point inside where V fmust be zero

However calculus 1s local

— So these methods can only guarantee a local extremum



Bisection methods

* Given afunctionf at three points a,b,c with [a<b<c], and a
way to evaluate f at a new point

— Given 2 initial guesses f(a) and f(b), if f(a)>f(b) moveinthe
direction a to b and choose a new parameter c.

— Find atriplet [a,b,c] sc
that and f(c)>f(b)
and f(a)>f(b)

— Choose anew point

between aand b
orbandc

— Repeat until the
pointsa, band c
are sufficiently

CI O% Figure 10.1.1.  Successive bracketing of a minimum. The minimum 1is originally bracketed by points
1,3.2. The function is evaluated at 4, which replaces 2; then at 5, which replaces 1; then at 6, which

[

replaces 4. The rule at each stage 1s to keep a center point that 1s lower than the two outside points. After
the steps shown, the minimum 1is bracketed by points 5,3.6.



Paraboloic bracketing

——————— parabola through @ @ @
cesseessesasese parabola through @@@ ,

Figure 10.2.1. Convergence to a minimum by inverse parabolic interpolation. A parabola (dashed line) is
drawn through the three original points 1,2,3 on the given function (solid line). The function is evaluated
at the parabola’s minimum, 4, which replaces point 3. A new parabola (dotted line) is drawn through
points 1,4,2. The minimum of this parabola is at 5, which is close to the minimum of the function.



