| Statistical methods in recognition

Basic steps in classifier design
— Collect training data
— Choose aclassification model
+ Statistical
* Linguistic
— Estimate “ parameters” of classification model from
training images
 Learning
— Evaluate model on training data and refine
— Collect test data set
— Apply classifier to test data

Factors that should influence our
' decision
How likely isit that a person weighs 125 pounds
given that the person isamale?lsafemale?
— Class-conditional probabilities
mHow likely isit that an arbitrary personisamale? A

female?
—Prior classprobabilities

m\What are the costs of calling amale afemale?
A female amale?
—Risks

A primer on probability

Probability spaces - models of random phenomena
Example: abox containssballslabeled 1, ..., s

— Experiment: Pick aball, noteitslabel and then replace
itinthebox. Repeat this experiment n times.

— Let N(k) bethe number of timesthat aball labeled k
was chosen in an experiment of length n

— example: s=3,n=20
11321223233212331322
= Npo(1) =5 N(2) =8 Ny(3) =7

Why is classification a problem?

Because classes overlap in our (impoverished)
representations

Example: Classify aperson asamale or female
based on weight

— Maletraining set :{ 155, 122, 135, 160, 240, 220, 180,
145}

— Femaletraining set: {95, 132, 115, 124, 145, 110, 150}
— Unknown sample has weight 125. Male or female?

Basic approaches to statistical

classification

1. Build (parametric) probabilistic models of our
training data, and compute the probability that an
unknown sample belongs to each of our possible
classes using these models.

. Compare an unknown sample directly to each
member of thetraining set, looking for thetraining
element “most similar” to the unknown.

Nearest neighbor classification
3. Train a neural network to recognize unknewn
samples by “teaching it” how to correctly train the
elements of thetraining set.
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The of the
23ae
N,(1)/20 =25 N,(2)/20=.40 N,(3)/20=
=5
As n getslarge, these numbers should settle
down to fixed numbers p,, p,, P;

— Wesay p; isthe probability that the i’ th ball will
be chosen when the experiment is performed
once




Primer on probability

Suppose: wecolor balls1, ..., rredand balls r+1,
=
— What isthe probability of choosing ared ball?
— Intuitively itisr/s= S p,where the sum is over all w,
such that thek'th ball isred
Let A be the subset of possible outcomes, w, ,
such that k isred.
— A hasr points
— Aiscalledan
— When we say that A has occurred we mean that an
experiment has been run and the outcome is represented
by apointinA.

If A and B are events, thensoare AC B,AE B
and Ac¢
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Simple properties of probabilities
— P(A9=1-P(A)
- P(A=1P(W=1-1=0
« if Aisasubset of B, then P(A) <= P(B)
+ P(AE B) =P(A) +P(B)-PAC B)
Conditional probabilities

— Our box hasr red ballslabeled 1, ..., rand b black balls
labeled r+1, ..., r+b. If the ball drawn is known to be
red, what is the probability that itslabel is 12

« A -event“red”
+ B-event“1"

« interested in conditional probability of B knowing that A has
occurred - P(BJA)
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~ Recognition
- Ay, ..., A, aremutually disjoint events with union\W
« think of the A; asthe possibleidentities of an object
— Bisaneventwith P(B)>0
« think of B asan observable event, like the area of acomponent
inanimage
— P(BJA)) and P(A,) areknown, k=1....,n

« P(BJA ) isthe probability that we would observe a component
with area B if the identify of the objectisA;

* P(A,) istheprior probability that an eventisin classk.
— Question: What isP(A;|B)
« What wewill really be after- the probability that the identity
of theobjectis A given that we make measurements B

Primer on probability

" Assigning probabilities to events:

Wki B

* A probability measure on a set\Wof possible
outcomes is areal valued function having domain
2W satisfying
-PW=1

— 0<=P(A) <=1, foral

P(L_J An)

J gl o nen
=a P(An)
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Let A and B be two events such that P(A) > 0.
Then the _ _ _ that B occurs

p(g|p) = DECA)

- Ball example: what isP(“1"| “red”)
— Letr=5andb=15
— P(1andred) =.05
— P(red)=.25
— So, P(1 | red) =.05/.25=.20

' 3 P(BG A
Primer on probability HELE LECs,

int since the A, are and

Bayes Rule
D(AIB) = P(AiC B) _ P(A)P(B|A)
P(B) & . PAYP(BA)




Training - computing P(B|A)

= Our training data is used to compute the
P(B|A,), where B is the vector of features we plan
to useto classify unknown imagesin the classes
Ai
— B might be (area, perimeter, moments)
How might we represent P(BJA)?
— asatable

« quantize area, perimeter and average gray level suitably, and
then use the training samples to fill in the three dimensional
histogram.

« anaytically, by astandard probability density function such as
the normal, uniform, ...
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n . itisustally assum
some simple mathematical form

— uniform density function
« each x; takes on values only in thefinite range [a;, b}
« P(B|A)) is constant for any realizable (x ..., X,)

« for onerandom variable, P(BJA,)= 1/(b-a) fora<=x <=band
0 elsewhere

f(X)=n(x;ms) =

— In any case, once the parameters of the assumed density
function are estimated, its goodness of fit should also
be evaluated.

Prior probabilities and their role
in classification _
- Prior probabilities of each object class
— probabilities of the events: object is
fromclassi (P(A )
—Example

« two classes- A and B; two measurement
outcomes: O and 1

« prob(0JA) = .5,prob(1]A) = .5; prob(0|B) = .2
prob(1|B)=.8
—Might guessthat if we measure 0 we
should decidethat the classis A, but if
we measure 1 we should decide B

Primer on probability - training

When we have many random variablesit is
usually impractical to create atable of the values
of P(B|A))from our training set.
— Example
« 5 measurements
 quantize each to 50 possible values
= Then there are 50° possible 5-tupleswe might
observein any element of the training set, and we
would need to estimate this many probabilities to
represent the conditional probability
— too few training samples
— too much storage required for the table
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Density functionis

called the Gaussian

function and the error

function

— miscalled the locati(
parameter

— siscalledthescae
parameter

- Generalization to

multivariate density
functions

— mean vector

— covariance matrix

— But supposethat P(A) = .10 and P(B) =
90

« Out of 100 samples, 90 will be B’sand 18 of these
(20% of those 90) will have measurement O
— Wewill classify theseincorrectly asA’s
— Total error is nP(B)P(0|B)
« 10 of these samples will be A’sand 5 of them will
have measurement O - these we'll get right
— Tota correct istP(A)P(O]A)




Prior probabilities

= So, how do we balance the effects of the prior
probabilities and the class conditional
probabilities?

- Wewant arulethat will make the fewest errors
— Errorsin A proportional to P(A)P(x|A)
— Errorsin B proportional to P(B)P(x|B)
— Tominimize the number of errors choose A if P(A)P(x|A) >
P(B)P(x|B); choose B otherwise

- Therule generalizesto many classes. Choose the
C such that P(C)P(x|C) is greatest.
- Of course, thisis just Bayes rule again

P(Cy) OP(Ca|x)dx + P(C2) P(C2| x)dx
L1 Lo

- TheregionsL,and L, aretheregionswhere x is
classified as C, and G, respectively.

Example - normal distributions

Inthe case of normal distributions, the

| decision boundariesthat provide the Bayes
. _error can be shown to be quadratic

i functions - quadratic curves for two

dimensiona probability density functions

Inthe specia case wherethe classes have
the same covariance matrix, decision
boundary isalinear function - classes can
be separated by ahyperplane

Bayes error

Theformulafor P(C|X) is
-PC)AxIC)
P(C|x) o)

where
R(x)=4 AC)P(XIC)
I

isanormalization factor that is the same for all
classes.

- To evaluate the performance of our decision rule
we can calculate the probability of error -
probability that the sample isassigned to the
wrong class.

P(C)P(X|C) Fr//\@pmcz)

L

Moving T either left or right would increase the overall
probability of error

Bayes error for normal




Adding risks

Minimizing total number of errors does not take
into account the cost of different types of errors
Example: Screening X-raysfor diagnosis

— two classes- healthy and diseased

— two types of errors

« classifying ahealthy patient asdiseased - might lead to a
human reviewing X-raysto verify computer classification

« classifying diseased patient as healthy - might allow disease to

progress to more threatening level

= Technicaly, including costs in the decision ruleis
accomplished by modifying the apriori
probabilities

I mage segmentation

- ldeally, object pixels would be black (O

intensity) and background pixelswhite
(maximum intensity)

[ But thisrarely happens

— pixels overlap regions from both the object and
the background, yielding intensities between
pure black and white - edge blur

— cameras introduce “noise” during imaging -
measurement “noise”

Il

Thresholding  [OA

How do we choose the threshold t?

Histogram (h) - gray level frequency distribution
of the gray level image F.

— hg(g) = number of pixelsin Fwhose gray level isg

— Hg(g) = number of pixelsin F whose gray level is<=g

ideal | cak
h(o) A
observed histogram

valley
intensity, g

An example from image
! segmentation
* How do we know which groups of pixelsin
adigital image correspond to the objects or
featuresto be analyzed?

— |n some simple cases, objects may be uniformly

darker or brighter than the background against
which they appear

« Black charactersimaged against the white
background of apage

« High gradient magnitude pointstend to lie on edges

| mage segmentation by

thresholding
* If the objects and background occupy
different ranges of gray levels, wecan
correctly “mark” the object pixelsby a
process called thresholding:
— Let F(i,j) betheoriginal, gray level image
—B(i,j) isahbinary image (pixelsare either O or 1)
created by threshelding F(i.j)
« B(i,j) = Lif F(ij) <t
* B(i.j) = 0if F(i.j)) >=t

Thresholding — a heuristic

= Peak and valey method

— Find the two most prominent peaks of h
» gisapeakifh(g) >h(g+Dg),Dg=1, ... K

— Let g, and g, bethetwo highest peaks, with g,

<G

— Find the deepest valley, g, between g, and g,
 gisthevalley ifhg(g) <=hd(g'), 9,9’ in[g;,9,]

— Use g asthe threshold




A probabilistic threshold selection method -
| minimizing Kullback information distance

he observed histogram, f, isamixture of the gray
| levelsof the pixels from the object(s) and the
' pixelsfrom the background
i — inanideal world the histogram would contain just two
spikes
— but
* measurement noise,

« model noise (e.g., variationsinink density within acharacter)
and

= edge blur (misalignment of object boundaries with pixel
boundaries and optical imperfections of camera)

spread these spikes out into hills

-1/ 28Ry
fo(Q) :msoe °
-1/2(8 ey
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fig) = ﬁ;e

Kullback information distance

So, for any hypothesized t, we can “predict” what
the total normalized image histogram be if
our model (mixture of two Gaussiang is correct.
= Py(@) =pofo(9) + Psfu(Q)
Thetotal normalized image histogram is

f(9)
So, the question reduces to:

— determine a suitable way to measure the similarity of P
and f

— then search for thet that gives the highest similarity

Kullback information distance

* Make aparametric model of the shapes of
the component histograms of the objects(s)
and background

~ Parametric model - the component
histograms are assumed to be Gaussian

— p,and p, are the proportions of the image that
comprise the objects and background

— m,and m, are the mean gray levels of the
objects and background

— s, and s,- aretheir standard deviations

Kullback information distance

~ Now, if we hypothesizeathreshold, t, then

all of these unknown parameters can be
approximated from the image histogram.

L et f(g) be the observed and normalized
histogram
— f(g) = percentage of pixelsfrom image having

B0 = & 1(9 po(t) =1- pa(t)
g:o

m(t) = & () m®)= & (99

Kullback information distance

A stitable
direcingas

T f
K@) =a f(g)log[%

- |f P, matches f exactly, then each term of the sum
is 0 and K(t) takes on its minimal value of O

- Gray levelswhere P, and f disagree are penalized
by the log term, weighted by the importance of
that gray level (f(g))

]




An adternative - minimize

probability of error

Using the same mixture model, we can
search for thet that minimizes the predicted
probability of error during thresholding

- Twotypesof errors

— background points that are marked as object
points. These are points from the background
that are darker than the threshold

— object pointsthat are marked as background
points. These are points from the object that are
brighter than the threshold

Nearest neighbor classifiers

- Canusethetraining set directly to classify objects
fromthetest set.
— Compare the new object to every element of the
training set
+ need ameasure of ¢l 0Oseness between an object from the

— Choose the class corresponding to the closest element
from the training set

— Generalization - k nearest neighbors: find k nearest
neighbors and perform a majority vote

Other classification models

Neura networks
Structural models
— grammatical models
combining level
— graphmodels
— logical models
- Mixed models

classes

features

An dternative - mimimize
probability of error

For each “reasonable”
threshold
— computethe
parameters of the two
F Gaussi ans and the
proportions
— compute the two
probability of errors
Find the threshold that
gives
— minimal overall error
— most equal errors

)= p & f(g)

g=t+1

Nearest neighbor classification

Computational problems
— Choosing asuitable similarity measurement
— Efficient algorithms for computing nearest neighbors
with large measurement sets (high dimensional spaces)
« kdtrees
« quadtrees
« but must use a suitable similarity measure
— Algorithms for “editing” the training set to produce a
smaller set for comparisons
« clustering: replace similar elementswith asingle element

« removal: remove elementsthat are not chosen as nearest
neighbors




