
Statistical methods in recognition

♦ Basic steps in classifier design
– Collect training data 
– Choose a classification model

• Statistical
• Linguistic

– Estimate “parameters” of classification model from 
training images

• Learning
– Evaluate model on training data and refine
– Collect test data set
– Apply classifier to test data

Why is classification a problem?

♦ Because classes overlap in our (impoverished) 
representations

♦ Example:  Classify a person as a male or female 
based on weight
– Male training set :{ 155, 122, 135, 160, 240, 220, 180, 

145}
– Female training set: {95, 132, 115, 124, 145, 110, 150}

– Unknown sample has weight 125.  Male or female?

Factors that should influence our 
decision
♦ How likely is it that a person weighs 125 pounds 

given that the person is a male? Is a female?  
– Class -conditional probabilities

nHow likely is it that an arbitrary person is a male? A 
female?

–Prior class probabilities

nWhat are the costs of calling a male a female? 
A female a male?

–Risks

Basic approaches to statistical 
classification
1. Build (parametric) probabilistic models of our 

training data, and compute the probability that an 
unknown sample belongs to each of our possible 
classes using these models.

2. Compare an unknown sample directly to each 
member of the training set, looking for the training 
element “most similar” to the unknown.
Nearest neighbor classification

3. Train a neural network to recognize unknown 
samples by “teaching it” how to correctly train the 
elements of the training set.

A primer on probability

♦ Probability spaces - models of random phenomena
♦ Example:  a box contains s balls labeled 1, ..., s

– Experiment:  Pick a ball, note its label and then replace 
it in the box.  Repeat this experiment n times.

– Let Nn(k) be the number of times that a ball labeled k 
was chosen in an experiment of length n

– example: s = 3, n = 20
1 1 3 2 1 2 2 3 2 3 3 2 1 2 3 3 1 3 2 2

– N20(1) = 5   N 20 (2) = 8  N 20(3) = 7

Primer on probability

♦ The relative frequencies of the outcomes
1,2,3 are
– N20(1)/20 = .25   N20(2)/20 = .40   N20(3)/20 = 

.35
– As n gets large, these numbers should settle 

down to fixed numbers p1, p2, p3

– We say p i is the probability that the i’th ball will 
be chosen when the experiment is performed 
once



Primer on probability
♦ Suppose:  we color balls 1, ..., r red and balls r+1, 

.., s green
– What is the probability of choosing a red ball?
– Intuitively it is r/s = Σ pk where the sum is over all ωk

such that the k’th ball is red

♦ Let A be the subset of possible outcomes, ωk , 
such that k is red.
– A has r points
– A is called an event
– When we say that A has occurred we mean that an 

experiment has been run and the outcome is represented 
by a point in A.

♦ If A and B are events, then so are A ∩ B, A ∪ B 
and Ac

Primer on probability
♦ Assigning probabilities to events:

♦ A probability measure on a set Ω of possible 
outcomes is a real valued function having domain 
2Ω satisfying
– P(Ω) = 1
– 0 <= P(A) <= 1, for all 

– If An are mutually disjoint sets then

P(B) = pk
ωk∈B
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Primer on probability

♦ Simple properties of probabilities
– P(Ac) = 1- P(A)

• P(∅)=1-P(Ω) = 1-1 = 0
• if A is a subset of B, then P(A) <= P(B)
• P(A∪ Β) = P(A) + P(B) - P(A∩ B)

♦ Conditional probabilities
– Our box has r red balls labeled 1, ..., r and b black balls 

labeled r+1, ..., r+b.  If the ball drawn is known to be 
red, what is the probability that its label is 1?

• A - event “red”
• B - event “1”
• interested in conditional probability of B knowing that A has 

occurred - P(B|A)

A B

Primer on probability

♦ Let A and B be two events such that P(A) > 0.  
Then the conditional probability that B occurs 
given A, written P(B|A) is defined to be

♦ Ball example:  what is P(“1”| “red”)
– Let r = 5 and b = 15
– P(1 and red) = .05
– P(red) = .25
– So, P(1 | red) = .05/.25 = .20

P(B|A) = P(B ∩ A)
P( A)

Primer on probability

♦ Recognition
– A1, ..., An are mutually disjoint events with union Ω.

• think of the Ai as the possible identities of an object

– B is an event with P(B) > 0
• think of B as an observable event, like the area of a component 

in an image

– P(B|Ak) and P(Ak) are known, k = 1,..., n
• P(B|Ak) is the probability that we would observe a component 

with area B if the identify of the object is A i

• P(Ak) is the prior probability that an event is in class k.
– Question:  What is P(Ai|B)

• What we will really be after - the probability that the identity 
of the object is A i given that we make measurements B

Primer on probability
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So intersections are disjoint since the Ak are and

P(B) = P(B ∩ Ak)
k =1

n

∑
But

P(B ∩ Ak ) = P(A k) P(B| A k )

Combining all this we get Bayes Rule

P(A i|B) =
P(A i ∩ B)

P(B)
=

P(Ai)P(B|Ai)
P(Ak)P(B| Ak)

k=1

n∑

P(B|A) = P(B ∩ A)
P( A)



Training - computing P(B|Ai)
♦ Our training data is used to compute the       

P(B|Ai), where B is the vector of features we plan 
to use to classify unknown images in the classes 
Ai
– B might be (area, perimeter, moments)

♦ How might we represent P(B|Ai)?
– as a table

• quantize area, perimeter and average gray level suitably, and 
then use the training samples to fill in the three dimensional 
histogram.

• analytically, by a standard probability density function such as
the normal, uniform, ...

A

P
G

Primer on probability - training

♦ When we have many random variables it is 
usually impractical to create a table of the values 
of P(B|Ai)from our training set.
– Example

• 5 measurements
• quantize each to 50 possible values
• Then there are 505 possible 5 -tuples we might 

observe in any element of the training set, and we 
would need to estimate this many probabilities to 
represent the conditional probability

– too few training samples
– too much storage required for the table

Primer on probability
♦ Instead, it is usually assumed that P(B|Ai) has 

some simple mathematical form
– uniform density function

• each xi takes on values only in the finite range [a i, bi]
• P(B|A i) is constant for any realizable (x1, ..., xn)
• for one random variable, P(B|Ai)= 1/(b-a) for a <= x <= b and 

0 elsewhere
– Normal distribution

– In any case, once the parameters of the assumed density 
function are estimated, its goodness of fit should also 
be evaluated.

f (x)= n(x ;µ,σ) =
1

2πσ
e

−(
x−µ
σ

) 2

Primer on probability

♦ Density function is  
called the Gaussian
function and the error 
function
– µ is called the location 

parameter
– σ is called the scale 

parameter

♦ Generalization  to 
multivariate density 
functions
– mean vector
– covariance matrix

Prior probabilities and their role 
in classification
♦Prior probabilities of each object class

– probabilities of the events: object is 
from class i (P(A i))

– Example 
• two classes - A and B; two measurement 

outcomes: 0 and 1
• prob(0|A) = .5, prob(1|A) = .5; prob(0|B) = .2

prob(1|B)=.8

– Might guess that if we measure 0 we 
should decide that the class is A, but if 
we measure 1 we should decide B

– But suppose that P(A) = .10 and P(B) = 
.90

• Out of 100 samples, 90 will be B’s and 18 of these 
(20% of those 90) will have measurement 0

– We will classify these incorrectly  as A’s
– Total error is nP(B)P(0|B)

• 10 of these samples will be A’s and 5 of them will 
have measurement 0 - these we’ll get right

– Total correct is nP(A)P(0|A)



Prior probabilities

♦ So, how do we balance the effects of the prior 
probabilities and the class conditional 
probabilities?

♦ We want a rule that will make the fewest errors
– Errors in A proportional to P(A)P(x|A)
– Errors in B proportional to P(B)P(x|B)
– To minimize the number of errors choose A if P(A)P(x|A) > 

P(B)P(x|B); choose B otherwise

♦ The rule generalizes to many classes.  Choose the
Ci such that P(Ci)P(x|Ci) is greatest.

♦ Of course, this is just Bayes’ rule again

Bayes error
♦ The formula for P(Ci|x) is

♦ where

is a normalization factor that is the same for all 
classes.

♦ To evaluate the performance of our decision rule 
we can calculate the probability of error -
probability that the sample is assigned to the 
wrong class.

P(Ci| x)= P(Ci)P(x |Ci)
P(x)

P(x)= P(Ci)P(x |Ci)
i

∑

Bayes error
♦ The total error which is called the Bayes error is 

defined as E[r(x)] = 

♦ The regions L1 and L2 are the regions where x is 
classified as C1 and C2 respectively.
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Example

x

P(C1)P(x|C1) P(C2)P(x|C2)

TL1 L2

Moving T either left or right would increase the overall
probability of error

Example - normal distributions

♦ In the case of normal distributions, the 
decision boundaries that provide the Bayes
error can be shown to be quadratic 
functions - quadratic curves for two 
dimensional probability density functions

♦ In the special case where the classes have 
the same covariance matrix, decision 
boundary is a linear function  - classes can 
be separated by a hyperplane

Bayes error for normal 
distributions



Adding risks
♦ Minimizing total number of errors does not take 

into account the cost of different types of errors
♦ Example:  Screening X-rays for diagnosis

– two classes - healthy and diseased
– two types of errors

• classifying a healthy patient as diseased - might lead to a 
human reviewing X-rays to verify computer classification

• classifying diseased patient as healthy - might allow disease to 
progress to more threatening level

♦ Technically, including costs in the decision rule is 
accomplished by modifying the a priori 
probabilities

An example from image 
segmentation
♦ How do we know which groups of pixels in 

a digital image correspond to the objects or 
features to be analyzed?
– In some simple cases, objects may be uniformly 

darker or brighter than the background against 
which they appear

• Black characters imaged against the white 
background of a page

• High gradient magnitude points tend to lie on edges

Image segmentation
♦ Ideally, object pixels would be black (0 

intensity) and background pixels white 
(maximum intensity)

♦ But this rarely happens
– pixels overlap regions from both the object and 

the background, yielding intensities between 
pure black and white - edge blur

– cameras introduce “noise” during imaging -
measurement “noise”

Image segmentation by
thresholding
♦ If the objects and background occupy 

different ranges of gray levels, we can  
correctly “mark” the object pixels by a 
process called thresholding:
– Let F(i,j) be the original, gray level image
– B(i,j) is a binary image (pixels are either 0 or 1) 

created by thresholding F(i,j)
• B(i,j) = 1 if F(i,j) < t
• B(i,j) = 0 if F(i,j) >= t

Thresholding

♦ How do we choose the threshold t?
♦ Histogram (h) - gray level frequency distribution 

of the gray level image F.
– hF(g) = number of pixels in F whose gray level is g
– HF(g) = number of pixels in F whose gray level is <=g

intensity, g

h(g)

peak peak

valley

observed histogram

ideal h

Thresholding – a heuristic 
algorithm
♦ Peak and valley method

– Find the two most prominent peaks of h
• g is a peak if hF(g) > hF(g ± ∆g), ∆g = 1, ..., k

– Let g1 and g2 be the two highest peaks, with g1
< g2

– Find the deepest valley, g,  between g1 and g2

• g is the valley if hF(g) <= hF(g’) , g,g’ in [g1, g2] 

– Use g as the threshold



A probabilistic threshold selection method -
minimizing Kullback information distance

♦ The observed histogram, f, is a mixture of the gray 
levels of the pixels from the object(s) and the 
pixels from the background
– in an ideal world the histogram would contain just two 

spikes
– but 

• measurement noise, 
• model noise  (e.g., variations in ink density within a character) 

and 
• edge blur (misalignment of object boundaries with pixel 

boundaries and optical imperfections of camera) 
spread these spikes out into hills

Kullback information distance

♦ Make a parametric model of the shapes of 
the component histograms of the objects(s) 
and background

♦ Parametric model - the component 
histograms are assumed to be Gaussian
– po and pb are the proportions of the image that 

comprise the objects and background
– µo and µb are the mean gray levels of the 

objects and background

– σo and σb- are their standard deviations

o

g

f(g)

µo µb

σo σb

fo(g) =
po

2π σo
e

−1/ 2( g − µo

σo
)2

fb(g) =
pb

2π σ b
e
−1 / 2( g − ub

σ b
)2

Kullback information distance
♦ Now, if we hypothesize a threshold, t, then 

all of these unknown parameters can be 
approximated from the image histogram.

♦ Let f(g) be the observed and normalized 
histogram
– f(g) = percentage of pixels from image having 

gray level g

po(t) = f (g)
g=0

t

∑
µo(t) = f (g)g

g= 0

t

∑ µb(t) = f (g) g
g = t +1

max

∑

pb( t) = 1 − p0( t)

Kullback information distance

♦ So, for any hypothesized t, we can “predict” what 
the total normalized image histogram should be if 
our model (mixture of two Gaussians) is correct.
– P t(g) = pofo(g) + pbfb(g)

♦ The total normalized image histogram is observed 
to be f(g)

♦ So, the question reduces to:
– determine a suitable way to measure the similarity of  P 

and f
– then search for the t that gives the highest similarity

Kullback information distance

♦ A suitable similarity measure is the Kullback
directed divergence, defined as

♦ If P t matches f exactly, then each term of the sum 
is 0 and K(t) takes on its minimal value of 0

♦ Gray levels where P t and f disagree are penalized 
by the log term, weighted by the importance of 
that gray level (f(g))

K (t ) =
g =0

max

∑ f (g) log[
f (g)

Pt(g)
]



An alternative - minimize 
probability of error
♦ Using the same mixture model, we can 

search for the t that minimizes the predicted 
probability of error during thresholding

♦ Two types of errors
– background points that are marked as object 

points.  These are points from the background 
that are darker than the threshold

– object points that are marked as background 
points. These are points from the object that are 
brighter than the threshold

An alternative - mimimize
probability of error
♦ For each “reasonable” 

threshold
– compute the 

parameters of the two
Gaussians and the 
proportions

– compute the two 
probability of errors

♦ Find the threshold that 
gives
– minimal overall error
– most equal errors

t

eo(t) = po fo(g)
g =t +1

max

∑

eb(t) = pb f b(g)
g =0

t

∑

fo
fb

Nearest neighbor classifiers

♦ Can use the training set directly to classify objects 
from the test set.
– Compare the new object to every element of the 

training set
• need a measure of closeness between an object from the 

training set and a test object

– Choose the class corresponding to the closest element 
from the training set

– Generalization - k nearest neighbors: find k nearest 
neighbors and perform a majority vote

D(x, y) = (xi −y i)2

σ i
2i

∑

Nearest neighbor classification

♦ Computational problems
– Choosing a suitable similarity measurement
– Efficient algorithms for computing nearest neighbors 

with large measurement sets (high dimensional spaces)
• k-d trees
• quadtrees
• but must use a suitable similarity measure 

– Algorithms for “editing” the training set to produce a 
smaller set for comparisons

• clustering: replace similar elements with a single element
• removal: remove elements that are not chosen as nearest 

neighbors

Other classification models

♦ Neural networks
♦ Structural models

– grammatical models
– graph models
– logical models

♦ Mixed models

features

combining level

classes


