Object Pose from a Single Image

How Do We See Objects in Depth?

- Stereo
- Use differences between images in our left and right eye
- How much is this difference for a car at 100 m ?
- Move our head sideways
- Or, the scene is moving
- Or we are moving in a car
- We know the size and shape of objects
- Traffic lights, car headlights and taillights

Headlights in the Dark

- A robdt could evaluate its distance from incoming cars at night partly from a mgdel of cars
- Distance betwyen headlights known

$Z=\frac{f D}{d}$

3

Object Pose with 1D Image Plane

- What happens if we don't know object's angle?

More Points

- Limited number of object poses (2 or 1)
- Head lights and one taillight

Correspondence Problem

- When we know correspondences (i.e. matchings), pose is easier to find
- When we know the pose, correspondences are easier to find.
- But we need to find both at the same time
- Below, we first assume we know correspondences and describe how to solve the pose given n corresponding points in image and object
- Perspective n-Point Problem
- Then we explore what to do when we don't know correspondences

Pose vs. Calibration Problem

- Now we know calibration matrix $\mathbf{K} / \mathrm{K}=\left[\begin{array}{ccc}\alpha_{x} & s & x_{0} \\ 0 & \alpha_{y} & y_{0} \\ 0 & 0 & 1\end{array}\right]$
- We can transform image points by \mathbf{K}^{-1} transformation $\left[\begin{array}{l}u \\ v \\ w\end{array}\right]=\mathbf{K}^{-1}\left[\begin{array}{l}u^{\prime} \\ v^{\prime} \\ w^{\prime}\end{array}\right] \quad$ Canonical perspective projection with $f=1$

$$
\left[\begin{array}{c}
u \\
v \\
w
\end{array}\right]=\mathbf{K}^{-1} \mathbf{K}\left[\begin{array}{lll}
\mathbf{I}_{3} & 1 & \mathbf{0}_{\mathbf{3}}
\end{array}\right]\left[\begin{array}{cc}
\mathbf{R} & \mathbf{T} \\
\mathbf{0}_{3}^{\mathrm{T}} & 1
\end{array}\right]\left[\begin{array}{c}
X_{S} \\
Y_{S} \\
Z_{S} \\
1
\end{array}\right] \quad \Rightarrow\left[\begin{array}{c}
u \\
v \\
w
\end{array}\right]=\left[\begin{array}{ll}
\mathbf{R} & \mathbf{T}
\end{array}\right]\left[\begin{array}{c}
X_{S} \\
Y_{S} \\
Z_{S} \\
1
\end{array}\right]
$$

- Projection matrix is now $\mathbf{P}=\left[\begin{array}{ll}\mathbf{R} & \mathbf{T}\end{array}\right]$
- Solving pose problem consists of finding \mathbf{R} and \mathbf{T}
- 6 unknowns

$$
\begin{aligned}
& \text { Iterative Pose Calculation } \\
& {\left[\begin{array}{c}
u \\
v \\
w
\end{array}\right]=\left[\begin{array}{cc}
\mathbf{r}_{1}^{\mathrm{T}} & T_{x} \\
\mathbf{r}_{2}^{\mathrm{T}} & T_{y} \\
\mathbf{r}_{3}^{\mathrm{T}} & T_{z}
\end{array}\right]\left[\begin{array}{c}
X_{S} \\
Y_{S} \\
Z_{S} \\
1
\end{array}\right] \Rightarrow\left[\begin{array}{c}
u \\
v \\
w
\end{array}\right]=\left[\begin{array}{cc}
\mathbf{r}_{1}^{\mathrm{T}} / T_{z} & T_{x} / T_{z} \\
\mathbf{r}_{2}^{\mathrm{T}} / T_{z} & T_{y} / T_{z} \\
\mathbf{r}_{3}^{\mathrm{T}} / T_{z} & 1
\end{array}\right] \mathbf{X}} \\
& \Rightarrow\left[\begin{array}{l}
u \\
v
\end{array}\right]=\left[\begin{array}{ll}
\mathbf{r}_{1}^{\mathrm{T}} / T_{z} & T_{x} / T_{z} \\
\mathbf{r}_{2}^{\mathrm{T}} / T_{z} & T_{y} / T_{z}
\end{array}\right] \mathbf{X} \Rightarrow\left[\begin{array}{ll}
u & v
\end{array}\right]=\mathbf{X}^{\mathrm{T}}\left[\begin{array}{ll}
\mathbf{r}_{1} / T_{z} & \mathbf{r}_{2}^{\mathrm{T}} / T_{z} \\
T_{x} / T_{z} & T_{y} / T_{z}
\end{array}\right] \\
& \Rightarrow\left[\begin{array}{ll}
u_{1} & v_{1} \\
u_{2} & v_{2} \\
u_{3} & v_{3} \\
u_{4} & v_{1}
\end{array}\right]=\left[\begin{array}{llll}
X_{1} & Y_{1} & Z_{1} & 1 \\
X_{2} & Y_{2} & Z_{2} & 1 \\
X_{3} & Y_{3} & Z_{3} & 1 \\
X & Y_{4} & Z & 1
\end{array}\right]\left[\begin{array}{ll}
\mathbf{r}_{1} / T_{z} & \mathbf{r}_{2} / T_{z} \\
T_{x} / T_{z} & T_{y} / T_{z}
\end{array}\right] \\
& {\left[\begin{array}{ll}
u_{4} & v_{4}
\end{array}\right]\left[\begin{array}{llll}
X_{4} & Y_{4} & Z_{4} & 1
\end{array}\right]\left[\begin{array}{ll}
u_{1} & v_{1} \\
u_{1}
\end{array}\right]} \\
& \begin{array}{l}
\Rightarrow\left[\begin{array}{ll}
\mathbf{r}_{1} / T_{z} & \mathbf{r}_{2} / T_{z} \\
T_{x} / T_{z} & T_{y} / T_{z}
\end{array}\right]=\mathbf{M}^{-1}\left[\begin{array}{cc}
u_{2} & v_{2} \\
u_{3} & v_{3} \\
u_{4} & v_{4}
\end{array}\right] \begin{array}{l}
\text { Non coplanar points needed } \\
\text { (otherwise matrix } \mathbf{M} \text { is } \\
\text { singular). At least 4 points. }
\end{array} \\
w_{i}=1+\mathbf{r}_{3} \cdot\left(X_{i}, Y_{i}, Z_{i}\right) / T_{z}
\end{array}
\end{aligned}
$$

Iterative Pose Calculation

- First we derive a linear system for the unknown parameters of rotation and translation that contains the known world coordinates of points and the homogenous coordinates of their images.
- Problem: Does not contain the wi components
- The wi components are required for computing homogeneous coordinates of images from the pixel locations
- They can be computed once the rotation and translation parameters are estimated
- Solution: Make a guess on wi, compute R and T , then recompute wi, and recomputge R and T , etc

Iterative Pose Calculation

- Compute model matrix \mathbf{M} and its inverse
- Assume $\quad \mathbf{r}_{3} \cdot\left(X_{i}, Y_{i}, Z_{i}\right) / T_{z}=1 \Rightarrow w_{i}=1$
- Compute $u_{i}=w_{i} x_{i}, v_{i}=w_{i} y_{i} \quad\left[\begin{array}{ll}u_{1} & v_{1}\end{array}\right]$
- Compute $\left[\begin{array}{ll}\mathbf{r}_{1} / T_{z} & \mathbf{r}_{2} / T_{z} \\ T_{x} / T_{z} & T_{y} / T_{z}\end{array}\right]=\mathbf{M}^{-1}\left[\begin{array}{ll}u_{2} & v_{2} \\ u_{3} & v_{3} \\ u_{4} & v_{4}\end{array}\right]$
- Compute $T_{z}, T_{\boldsymbol{x}}, T_{\boldsymbol{y}}, \mathbf{r}_{\mathbf{1}}, \mathbf{r}_{\mathbf{2}}$, then $\mathbf{r}_{\mathbf{3}}=\mathbf{r}_{\mathbf{1}} \times \mathbf{r}_{\mathbf{2}}$
- Compute $w_{i}=1+\mathbf{r}_{3} \cdot\left(X_{i}, Y_{i}, Z_{i}\right) / T_{z}$
- Go back to step 2 and iterate until convergence

Left: Actual perspective image for cube with known model Top: Evolution of perspective image during iteration Bottom: Evolution of scaled orthographic projection

Triangle Pose Problem

- There are two basic approaches
- Analytically solving for unknown pose parameters
- Solving a 4th degree equation in one pose parameter, and then using the 4 solutions to the equation to solve for remaining pose parameters
- problem: errors in estimating location of image features can lead to either large pose errors or failure to solve the 4th degree equation
- Approximate numerical algorithms
- find solutions when exact methods fail due to image measurement error
- more computation

15

3 Points

- Each correspondence between scene point and image point determines 2 equations
- Since there are 6 degrees of freedom in the pose problems, the correspondences between 3 scene points in a known configuration and 3 image points should provide enough equations for computing the pose of the 3 scene points
- the pose of a triangle of known dimension is defined from a single image of the triangle
- But nonlinear method, 2 to 4 solutions

Numerical Method for Triangle Pose

If distance R_{c} to C is known, then possible locations of A (and B) can be computed

- they lie on the intersections of the line of sight through A^{\prime} and the sphere of radius AC centered at C
- Once A and B are located, their distance can be computed and compared against the actual distance AB

Choosing Points on Objects

- Given a 3-D object, how do we decide which points from its surface to choose for its model?
- Choose points that will give rise to detectable features in images
- For polyhedra, the images of its vertices will be points in the images where two or more long lines meet
- These can be detected by edge detection methods
- Points on the interiors of regions, or along straight lines are noteasily identified in images.

Objects and Unknown Correspondences

- Strategy:
- Pick up a small group of points (3 or 4) on object, and candidate image points in image
- Find object pose for these correspondences
- Check or accumulate evidence by one of following techniques:
- Clustering in pose space
- Image-Model Alignment and RANSAC

Choosing the Points

- Example: why not choose the midpoints of the edges of a polyhedra as features
- midpoints of projections of line segments are not the projections of the midpoints of line segments
- if the entire line segment in the image is not identified, then we introduce error in locating midpoint

4-3-2-?

- 4 - point perspective solution
- Unique solution for 6 pose parameters
- Computational complexity of $\mathrm{n}^{4} \mathrm{~m}^{4}$
- 3 - point perspective solution
- Generally two solutions per triangle pair, but sometimes four.
- Reduced complexity of $n^{3} m^{3}$

Reducing the Combinatorics of Pose Estimation

- How can we reduce the number of matches
- Consider only quadruples of object features that are simultaneously visible
- extensive preprocessing

Reducing the Combinatorics of Pose Estimation

- Reducing the number of matches
- Consider only quadruples of image features that

Are connected by edges

- Are "close" to one another
- But not too close or the inevitable errors in estimating the position of an image vertex will lead to large errors in pose estimation
- Generally, try to group the image features into sets that are probably from a single object, and then only construct quadruples from within a single group

Image-Model Alignment

- Given:
- A 3-D object modeled as a collection of points
- Image of a scene suspected to include an instance of the object, segmented into feature points
- Goal
- Hypothesize the pose of the object in the scene by matching (collections of) n model points against n feature points, enabling us to solve for the rigid body transformation from the object to world coordinate systems, and
- Verifythat hypothesis by projecting the remainder of the model into the image and matching
- Look for edges connecting predicted vertex locations

Clustering in Pose Space

- Each matching of n model points against n feature points provides \mathbf{R} and \mathbf{T}
- Each correct matching provides a similar rotation and translation
- Represent each pose by a point in a 6D space. Then points from correct matchings should cluster
- Or find clusters for points \mathbf{T} and find the cluster where the rotations are most consistent
- "Generalized Hough transform" if bins are used ${ }_{27}$
- Surface markings 25
Surface markings 25

RANSAC

- RANdom SAmple Consensus
- Randomly select a set of 3 points in the image and a select a set of 3 points in the model
- Compute triangle pose and pose of model
- Project model at computed pose onto image
- Determine the set of projected model points that are within a distance threshold t of image points, called the consensus set
- After N trials, select pose with largest consensus set

