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CMSC 828D: Fundamentals of Computer Vision 
Homework 7 

Instructors: Larry Davis, Ramani Duraiswami, 
Daniel DeMenthon, and Yiannis Aloimonos 

Solution based on homework submitted by Haiying Liu 
 

1. Write a Matlab function that outputs the homogeneous coordinates of the 12 lines that 
are the images of the edges of the cube (these are lines in the image plane. Refer to slide 
11 of the class on Projective Geometry, and use the Matlab function cross). 

Solution: Please see appendix for Matlab script and results. 

2. Find the homogeneous coordinates of the 3 vanishing points of the image of the cube. 
These are the intersections of the image lines corresponding to parallel edges of the 
cube (refer to slide 11 of Projective Geometry again for a method for finding 
intersections between lines. Refer to slide 36 of class 3 on cameras for a review on 
vanishing points). 

Solution: Please see appendix for Matlab script and results. 

3. Each vanishing point is the image of a point at infinity of the form (d, 0), where d is a 
Euclidean vector with 3 coordinates expressing the direction of a cube edge. Show that 
the coordinates of a vanishing point v can be expressed as v = K R d, where K is the 
calibration matrix and R is the rotation matrix between the camera and world 
coordinate system (use slides of Calibration class). 

Solution: Note that a group of parallel lines (parallel edges in our problem) intersects at one 
point at infinite. Without loss of generality, we select or construct one of the lines, denoted by 0l , 
that goes through the origin of world coordinate system. Assume the angle between 0l  and x , 
y , z  axis’s are α , β , γ  respectfully. Then any point on 0l  can be expressed as ( )γβα ,,,r  in 
polar coordinates, ( )γβα cos,cos,cos rrr  in Euclidean coordinate, or ( )r,cos,cos,cos γβα  in 
homogeneous coordinates. When 0→r , 0l  reaches the infinite point. In class, we already 
derived the relationship between a point in world and its image. Use the notation in class and 
apply the relationship to a point ( )r,cos,cos,cos γβα  on 0l , we have: 
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where [ ]Tcos,cos,cos γβα=d  is the Euclidean vector with 3 coordinates expressing the 
direction of 0l .  

4. Express an edge direction d as a function of K, R and v. 

Solution: In class, we already derive that the K  is in the form: 
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Since 0sin2 ≠= θvukkfK , 1−K  exists. Note that any rotation can be decomposed as 
combination of three single rotations around x , y , z  axis’s respectfully, i.e. 
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Because zyxiiii ,,,1sincos 22 ==+= θθR , 01 ≠=== zyxzyx RRRRRRR , 1−R  exists. 

Therefore, we can express d  as vKRd 11 −−= . 

5. The 3 directions of cube edges that give rise to the 3 vanishing points are mutually 
perpendicular, therefore the dot product between two directions is zero. Show that this 
condition leads to an equation in which the unknown is the calibration matrix K. Such 
an equation can be written for each of the 3 pairs of vanishing points. Note: this 
equation expresses that the vanishing points belong to a conic that is the image of the 
so-called absolute conic. 

Solution: From last problem, we have vKRdvKRd 111 −−− =⇒= . Note that rotation matrix R  
is a unitary matrix, i.e. IRR =T , we have, 
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Equation 1 

Where notation “ ba ⋅ ” means dot product of vectors a  and b . This is an equation (relationship) 
for each of the three pairs of vanishing points in image ji ≠ . 

6. The equation just found leads to nonlinear conditions between the elements of the 
matrix K, so we will not attempt to solve the system, but only verify that the matrix K 
found last week indeed is a solution. Verify that the equation above is verified for the 
vanishing points found in (2), for a calibration matrix in which the skew is zero, the 2 
focal lengths are equal to 690, and the image center is at (300, 250). 

Solution: Given 690== vu fkfk ,  ( ) ( )250,300, 00 =vu ,  and skew is zero, i.e. =θ 90°, we have: 
















=
















=

100
2506900

3000690

100
sin0

cot

0

0

vfk

ufkfk

v

uu

θ

θ

K  
















=























−

−
−

=−

1.000000
0.3623-0.00140
0.4348-0 0.0014

100

sinsin
0

sincotsincot1

0

00

1

vv

vu

vu

vu

fk
v

fk

kfk
ukvk

fkfk
θθ

θθθθ

K  

Please see Matlab script in appendix for detail verification. From the experiment, we verified that 
the calibration matrix defined by K  satisfies [Equation 1] with error tolerance less than 810−  . 
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Appendix: 

• hw7.m: 
function hw7 
% Syntax: hw7 
% 
% Description: CMSC828D HW7 
% 
% Author: Haiying Liu 
%   Date: Oct. 12, 2000 
% 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 
dbstop if error 
 
msg = nargchk(0, 0, nargin); 
if (~isempty(msg)) 
  error(strcat('ERROR:', msg)); 
end 
 
clear msg; 
 
%====================================================================== 
%= Turn on the diary to save the result. 
 
diary off; 
 
filename = 'hw7.txt'; 
if (exist(filename, 'file')) 
  delete(filename); 
end 
 
eval(['diary ', filename]); 
 
disp(' '); 
disp('» hw7'); 
 
%====================================================================== 
%= Initialization. 
 
world_coord = [ ... 
     2,  2,  2; ... 
    -2,  2,  2; ... 
    -2,  2, -2; ... 
     2,  2, -2; ... 
     2, -2,  2; ... 
    -2, -2,  2; ... 
    -2, -2, -2; ... 
     2, -2, -2; ... 
  ]; 
 
image_coord = [ ... 
    422, 323; ... % m1 
    178, 323; ... % m2 
    118, 483; ... % m3 
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    482, 483; ... % m4 
    438,  73; ... % m5 
    162,  73; ... % m6 
     78, 117; ... % m7 
    522, 117; ... % m8 
  ]; 
 
%====================================================================== 
%= 1. Write a Matlab function that outputs the homogeneous coordinates 
%=    of the 12 lines that are the images of the edges of the cube 
%=    (these are lines in the image plane. Refer to slide 11 of the 
%=    class on Projective Geometry, and use the Matlab function cross). 
 
% Note that a line going through two points m1 and m2 is represented 
% by the cross-product m1 x m2. Any point x on the line satisfies 
% x'(m1 x m2) = 0. 
 
disp(' '); 
disp(':::::::::::::'); 
disp(':: Part 1. ::'); 
disp(':::::::::::::'); 
disp(' '); 
 
% Define a connectivity of the eight points. 
%  m1   m2   m3   m4   m5   m6   m7   m8 
connect = [ ... 
    1, 2; ... 
    4, 3; ... 
    5, 6; ... 
    8, 7; ... % group 1 
    1, 4; ... 
    2, 3; ... 
    5, 8; ... 
    6, 7; ... % group 2 
    1, 5; ... 
    2, 6; ... 
    3, 7; ... 
    4, 8; ... % group 3 
  ]; 
 
% Compute edges. 
disp('Twelve edges:'); 
disp(' '); 
 
nEdges = size(connect, 1); 
 
for index = 1:nEdges 
  ptIndex_i      = connect(index, 1); 
  ptIndex_j      = connect(index, 2); 
  mi             = [image_coord(ptIndex_i, :), 1]; 
  mj             = [image_coord(ptIndex_j, :), 1]; 
  edge(index, :) = cross(mi, mj); 
   
  disp(['m', num2str(ptIndex_i), '~m', num2str(ptIndex_j), ... 
      ': ', num2str(edge(index, :))]); 
end 
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%====================================================================== 
%= 2. Find the homogeneous coordinates of the 3 vanishing points of 
%= the image of the cube. These are the intersections of the image 
%= lines corresponding to parallel edges of the cube (refer to slide 
%= 11 of Projective Geometry again for a method for finding 
%= intersections between lines. Refer to slide 36 of class 3 on 
%= cameras for a review on vanishing points). 
 
disp(' '); 
disp(':::::::::::::'); 
disp(':: Part 2. ::'); 
disp(':::::::::::::'); 
disp(' '); 
 
% The three group of parallel lines are: 
% m1~m2, m3~m4, m5~m6, m7~m8; 
% m1~m4, m2~m3, m5~m8, m6~m7; 
% m1~m5, m2~m6, m3~m7, m4~m8; 
 
% Note the intersect of two lines L1 and L2 is L1 x L2. 
 
% Calculate the mean of vanishing point for each group of 
% parallel lines. 
ptIndex     = 0; 
vanishPoint = zeros(3); 
for index = 1:4:nEdges - 3 
  % Form matrix L for L.p = 0 
  L = zeros(4, 3); 
  for row = index:index + 3 
    L(row - index + 1, :) = edge(row, :); 
  end 
   
  % Solve L.p = 0 by DLT 
  [U, S, V] = svd(L); 
  nCol_V = size(V, 2); 
  ptIndex   = ptIndex + 1; 
  vanishPoint(ptIndex, :) = V(:, nCol_V)'; 
end 
 
vanishPoint 
 
%====================================================================== 
%= 6. The equation just found leads to nonlinear conditions between 
%= the elements of the matrix K, so we will not attempt to solve the 
%= system, but only verify that the matrix K found last week indeed is 
%= a solution.  Verify that the equation above is verified for the 
%= vanishing points found in (2), for a calibration matrix in which 
%= the skew is zero, the 2 focal lengths are equal to 690, and the 
%= image center is at (300, 250). 
 
disp(' '); 
disp(':::::::::::::'); 
disp(':: Part 2. ::'); 
disp(':::::::::::::'); 
 
K = [ ... 
    690   0     300; ... 
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    0     690   250; ... 
    0     0     1  ; ... 
  ] 
 
K_inv = inv(K); 
 
nVanPt = size(vanishPoint, 1); 
for idx1 = 1:nVanPt - 1 
  for idx2 = idx1 + 1:nVanPt 
    vi   = vanishPoint(idx1, :); 
    vj   = vanishPoint(idx2, :); 
    ri   = K_inv * vi'; 
    rj   = K_inv * vj'; 
     
    disp('-----------'); 
    disp(['r', num2str(idx1), ' = inv(K) * v', num2str(idx1), ... 
        ' = [', num2str(ri'), ']''']); 
    disp(['r', num2str(idx2), ' = inv(K) * v', ... 
        num2str(idx2), ' = [', num2str(rj'), ']''']); 
    disp(['r', num2str(idx1), ' . r', num2str(idx2), ... 
      ' = ', num2str(ri' * rj)]); 
  end 
end 
 
disp(' '); 
 
%====================================================================== 
%= Stop recording 
 
diary off; 

 

 

• Result: 
  
» hw7 
  
::::::::::::: 
:: Part 1. :: 
::::::::::::: 
  
Twelve edges: 
  
m1~m2: 0   -244  78812 
m4~m3: 0    -364  175812 
m5~m6: 0   -276  20148 
m8~m7: 0   -444  51948 
m1~m4: -160     60  48140 
m2~m3: -160    -60  47860 
m5~m8: -44     84  13140 
m6~m7: -44    -84  13260 
m1~m5: 250      16 -110668 
m2~m6: 250    -16 -39332 
m3~m7: 366    -40 -23868 
m4~m8: 366      40 -195732 
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::::::::::::: 
:: Part 2. :: 
::::::::::::: 
  
 
vanishPoint = 
 
    1.0000         0         0 
   -1.0000    0.0011   -0.0033 
    0.1376    0.9905    0.0005 
 
  
::::::::::::: 
:: Part 2. :: 
::::::::::::: 
 
K = 
 
   690     0   300 
     0   690   250 
     0     0     1 
 
----------- 
r1 = inv(K) * v1 = [0.0014493           0           0]' 
r2 = inv(K) * v2 = [-1.2947e-008   0.0012092  -0.0033333]' 
r1 . r2 = -1.8764e-011 
----------- 
r1 = inv(K) * v1 = [0.0014493           0           0]' 
r3 = inv(K) * v3 = [3.0874e-010   0.0012693   0.0004586]' 
r1 . r3 = 4.4745e-013 
----------- 
r2 = inv(K) * v2 = [-1.2947e-008   0.0012092  -0.0033333]' 
r3 = inv(K) * v3 = [3.0874e-010   0.0012693   0.0004586]' 
r2 . r3 = 6.2837e-009 
  
 


