
CMSC 828D Fundamentals of Computer Vision

1/8

CMSC 828D: Fundamentals of Computer Vision
Homework 7

Instructors: Larry Davis, Ramani Duraiswami,
Daniel DeMenthon, and Yiannis Aloimonos

Solution based on homework submitted by Haiying Liu

1. Write a Matlab function that outputs the homogeneous coordinates of the 12 lines that
are the images of the edges of the cube (these are lines in the image plane. Refer to slide
11 of the class on Projective Geometry, and use the Matlab function cross).

Solution: Please see appendix for Matlab script and results.

2. Find the homogeneous coordinates of the 3 vanishing points of the image of the cube.
These are the intersections of the image lines corresponding to parallel edges of the
cube (refer to slide 11 of Projective Geometry again for a method for finding
intersections between lines. Refer to slide 36 of class 3 on cameras for a review on
vanishing points).

Solution: Please see appendix for Matlab script and results.

3. Each vanishing point is the image of a point at infinity of the form (d, 0), where d is a
Euclidean vector with 3 coordinates expressing the direction of a cube edge. Show that
the coordinates of a vanishing point v can be expressed as v = K R d, where K is the
calibration matrix and R is the rotation matrix between the camera and world
coordinate system (use slides of Calibration class).

Solution: Note that a group of parallel lines (parallel edges in our problem) intersects at one
point at infinite. Without loss of generality, we select or construct one of the lines, denoted by 0l ,
that goes through the origin of world coordinate system. Assume the angle between 0l and x ,
y , z axis’s are α , β , γ respectfully. Then any point on 0l can be expressed as ()γβα ,,,r in
polar coordinates, ()γβα cos,cos,cos rrr in Euclidean coordinate, or ()r,cos,cos,cos γβα in
homogeneous coordinates. When 0→r , 0l reaches the infinite point. In class, we already
derived the relationship between a point in world and its image. Use the notation in class and
apply the relationship to a point ()r,cos,cos,cos γβα on 0l , we have:

CMSC 828D Fundamentals of Computer Vision

2/8

[]

[]

[]

KRd

RdKI

Rd
0IK

1
TR

0IK

TR
0IK

=

=









=



























=



























=

→

3

33

33

330

0
|

0
cos
cos
cos

0
|

cos
cos
cos

10
|lim

γ
β
α

γ
β
α

r

v
r

where []Tcos,cos,cos γβα=d is the Euclidean vector with 3 coordinates expressing the
direction of 0l .

4. Express an edge direction d as a function of K, R and v.

Solution: In class, we already derive that the K is in the form:
















=

100
sin0

cot

0

0

vfk

ufkfk

v

uu

θ

θ

K .

Since 0sin2 ≠= θvukkfK , 1−K exists. Note that any rotation can be decomposed as
combination of three single rotations around x , y , z axis’s respectfully, i.e.















 −















 −
















−==

100
0cossin
0sincos

cos0sin
010

sin0cos

cossin0
sincos0

001

zz

zz

yy

yy

xx

xxzyx θθ
θθ

θθ

θθ

θθ
θθRRRR

Because zyxiiii ,,,1sincos 22 ==+= θθR , 01 ≠=== zyxzyx RRRRRRR , 1−R exists.

Therefore, we can express d as vKRd 11 −−= .

5. The 3 directions of cube edges that give rise to the 3 vanishing points are mutually
perpendicular, therefore the dot product between two directions is zero. Show that this
condition leads to an equation in which the unknown is the calibration matrix K. Such
an equation can be written for each of the 3 pairs of vanishing points. Note: this
equation expresses that the vanishing points belong to a conic that is the image of the
so-called absolute conic.

Solution: From last problem, we have vKRdvKRd 111 −−− =⇒= . Note that rotation matrix R
is a unitary matrix, i.e. IRR =T , we have,

CMSC 828D Fundamentals of Computer Vision

3/8

()
() ()
() ()

() () 0

0

0

0

0

0

11

T

TT

T

=⋅

⇒=⋅

⇒=

⇒=

⇒=

⇒=⋅

−−
ji

ji

ji

ji

ji

ji

vKvK

RdRd

RdRd

dRRd

dd

dd

Equation 1

Where notation “ ba ⋅ ” means dot product of vectors a and b . This is an equation (relationship)
for each of the three pairs of vanishing points in image ji ≠ .

6. The equation just found leads to nonlinear conditions between the elements of the
matrix K, so we will not attempt to solve the system, but only verify that the matrix K
found last week indeed is a solution. Verify that the equation above is verified for the
vanishing points found in (2), for a calibration matrix in which the skew is zero, the 2
focal lengths are equal to 690, and the image center is at (300, 250).

Solution: Given 690== vu fkfk , () ()250,300, 00 =vu , and skew is zero, i.e. =θ 90°, we have:
















=
















=

100
2506900

3000690

100
sin0

cot

0

0

vfk

ufkfk

v

uu

θ

θ

K
















=























−

−
−

=−

1.000000
0.3623-0.00140
0.4348-0 0.0014

100

sinsin
0

sincotsincot1

0

00

1

vv

vu

vu

vu

fk
v

fk

kfk
ukvk

fkfk
θθ

θθθθ

K

Please see Matlab script in appendix for detail verification. From the experiment, we verified that
the calibration matrix defined by K satisfies [Equation 1] with error tolerance less than 810− .

CMSC 828D Fundamentals of Computer Vision

4/8

Appendix:

• hw7.m:
function hw7
% Syntax: hw7
%
% Description: CMSC828D HW7
%
% Author: Haiying Liu
% Date: Oct. 12, 2000
%

%%%

dbstop if error

msg = nargchk(0, 0, nargin);
if (~isempty(msg))
 error(strcat('ERROR:', msg));
end

clear msg;

%==
%= Turn on the diary to save the result.

diary off;

filename = 'hw7.txt';
if (exist(filename, 'file'))
 delete(filename);
end

eval(['diary ', filename]);

disp(' ');
disp('» hw7');

%==
%= Initialization.

world_coord = [...
 2, 2, 2; ...
 -2, 2, 2; ...
 -2, 2, -2; ...
 2, 2, -2; ...
 2, -2, 2; ...
 -2, -2, 2; ...
 -2, -2, -2; ...
 2, -2, -2; ...
];

image_coord = [...
 422, 323; ... % m1
 178, 323; ... % m2
 118, 483; ... % m3

CMSC 828D Fundamentals of Computer Vision

5/8

 482, 483; ... % m4
 438, 73; ... % m5
 162, 73; ... % m6
 78, 117; ... % m7
 522, 117; ... % m8
];

%==
%= 1. Write a Matlab function that outputs the homogeneous coordinates
%= of the 12 lines that are the images of the edges of the cube
%= (these are lines in the image plane. Refer to slide 11 of the
%= class on Projective Geometry, and use the Matlab function cross).

% Note that a line going through two points m1 and m2 is represented
% by the cross-product m1 x m2. Any point x on the line satisfies
% x'(m1 x m2) = 0.

disp(' ');
disp(':::::::::::::');
disp(':: Part 1. ::');
disp(':::::::::::::');
disp(' ');

% Define a connectivity of the eight points.
% m1 m2 m3 m4 m5 m6 m7 m8
connect = [...
 1, 2; ...
 4, 3; ...
 5, 6; ...
 8, 7; ... % group 1
 1, 4; ...
 2, 3; ...
 5, 8; ...
 6, 7; ... % group 2
 1, 5; ...
 2, 6; ...
 3, 7; ...
 4, 8; ... % group 3
];

% Compute edges.
disp('Twelve edges:');
disp(' ');

nEdges = size(connect, 1);

for index = 1:nEdges
 ptIndex_i = connect(index, 1);
 ptIndex_j = connect(index, 2);
 mi = [image_coord(ptIndex_i, :), 1];
 mj = [image_coord(ptIndex_j, :), 1];
 edge(index, :) = cross(mi, mj);

 disp(['m', num2str(ptIndex_i), '~m', num2str(ptIndex_j), ...
 ': ', num2str(edge(index, :))]);
end

CMSC 828D Fundamentals of Computer Vision

6/8

%==
%= 2. Find the homogeneous coordinates of the 3 vanishing points of
%= the image of the cube. These are the intersections of the image
%= lines corresponding to parallel edges of the cube (refer to slide
%= 11 of Projective Geometry again for a method for finding
%= intersections between lines. Refer to slide 36 of class 3 on
%= cameras for a review on vanishing points).

disp(' ');
disp(':::::::::::::');
disp(':: Part 2. ::');
disp(':::::::::::::');
disp(' ');

% The three group of parallel lines are:
% m1~m2, m3~m4, m5~m6, m7~m8;
% m1~m4, m2~m3, m5~m8, m6~m7;
% m1~m5, m2~m6, m3~m7, m4~m8;

% Note the intersect of two lines L1 and L2 is L1 x L2.

% Calculate the mean of vanishing point for each group of
% parallel lines.
ptIndex = 0;
vanishPoint = zeros(3);
for index = 1:4:nEdges - 3
 % Form matrix L for L.p = 0
 L = zeros(4, 3);
 for row = index:index + 3
 L(row - index + 1, :) = edge(row, :);
 end

 % Solve L.p = 0 by DLT
 [U, S, V] = svd(L);
 nCol_V = size(V, 2);
 ptIndex = ptIndex + 1;
 vanishPoint(ptIndex, :) = V(:, nCol_V)';
end

vanishPoint

%==
%= 6. The equation just found leads to nonlinear conditions between
%= the elements of the matrix K, so we will not attempt to solve the
%= system, but only verify that the matrix K found last week indeed is
%= a solution. Verify that the equation above is verified for the
%= vanishing points found in (2), for a calibration matrix in which
%= the skew is zero, the 2 focal lengths are equal to 690, and the
%= image center is at (300, 250).

disp(' ');
disp(':::::::::::::');
disp(':: Part 2. ::');
disp(':::::::::::::');

K = [...
 690 0 300; ...

CMSC 828D Fundamentals of Computer Vision

7/8

 0 690 250; ...
 0 0 1 ; ...
]

K_inv = inv(K);

nVanPt = size(vanishPoint, 1);
for idx1 = 1:nVanPt - 1
 for idx2 = idx1 + 1:nVanPt
 vi = vanishPoint(idx1, :);
 vj = vanishPoint(idx2, :);
 ri = K_inv * vi';
 rj = K_inv * vj';

 disp('-----------');
 disp(['r', num2str(idx1), ' = inv(K) * v', num2str(idx1), ...
 ' = [', num2str(ri'), ']''']);
 disp(['r', num2str(idx2), ' = inv(K) * v', ...
 num2str(idx2), ' = [', num2str(rj'), ']''']);
 disp(['r', num2str(idx1), ' . r', num2str(idx2), ...
 ' = ', num2str(ri' * rj)]);
 end
end

disp(' ');

%==
%= Stop recording

diary off;

• Result:

» hw7

:::::::::::::
:: Part 1. ::
:::::::::::::

Twelve edges:

m1~m2: 0 -244 78812
m4~m3: 0 -364 175812
m5~m6: 0 -276 20148
m8~m7: 0 -444 51948
m1~m4: -160 60 48140
m2~m3: -160 -60 47860
m5~m8: -44 84 13140
m6~m7: -44 -84 13260
m1~m5: 250 16 -110668
m2~m6: 250 -16 -39332
m3~m7: 366 -40 -23868
m4~m8: 366 40 -195732

CMSC 828D Fundamentals of Computer Vision

8/8

:::::::::::::
:: Part 2. ::
:::::::::::::

vanishPoint =

 1.0000 0 0
 -1.0000 0.0011 -0.0033
 0.1376 0.9905 0.0005

:::::::::::::
:: Part 2. ::
:::::::::::::

K =

 690 0 300
 0 690 250
 0 0 1

r1 = inv(K) * v1 = [0.0014493 0 0]'
r2 = inv(K) * v2 = [-1.2947e-008 0.0012092 -0.0033333]'
r1 . r2 = -1.8764e-011

r1 = inv(K) * v1 = [0.0014493 0 0]'
r3 = inv(K) * v3 = [3.0874e-010 0.0012693 0.0004586]'
r1 . r3 = 4.4745e-013

r2 = inv(K) * v2 = [-1.2947e-008 0.0012092 -0.0033333]'
r3 = inv(K) * v3 = [3.0874e-010 0.0012693 0.0004586]'
r2 . r3 = 6.2837e-009

