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Emailed October 12, 2000  
Due back October 18 2000 
 
Homework 7: Camera calibration using vanishing points 
 
This week we are looking at a way to calibrate a camera using vanishing points. 
 
We are using the same cube and the same image as last week. As a  
reminder, the world coordinates of the cube vertices are 
  
     2     2     2  
    -2     2     2  
    -2     2    -2  
     2     2    -2 
     2    -2     2  
    -2    -2     2 
    -2    -2    -2  
     2    -2    -2  
 
and the corresponding image points are 
 
   422   323 
   178   323 
   118   483 
   482   483 
   438    73 
   162    73 
    78   117 
   522   117 
 
1. Write a Matlab function that outputs the homogeneous coordinates of the 12 
lines that are the images of the edges of the cube (these are lines in the 
image plane. Refer to slide 11 of the class on Projective Geometry, and use 
the Matlab function cross). 
 
2. Find the homogeneous coordinates of the 3 vanishing points of the image of 
the cube. These are the intersections of the image lines corresponding to 
parallel edges of the cube (refer to slide 11 of Projective Geometry again 
for a method for finding intersections between lines. Refer to slide 36 of 
class 3 on cameras for a review on vanishing points). 
NOTE: Using only 2 lines is OK. For a least square solution using 4 lines,  
write that the vanishing point belongs to 4 lines, and find P as the null vector  
for the 4x3 matrix of the system (cf . previous homework).  
 
3. Each vanishing point is the image of a point at infinity of the form (d, 
0), where d is a euclidean vector with 3 coordinates expressing the direction 
of a cube edge. Show that the coordinates of a vanishing point v can be 
expressed as v = K R d, where K is the calibration matrix and R is the 
rotation matrix between the camera and world coordinate system (use slides of 
Calibration class). 
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4. Express an edge direction d as a function of K, R and v. 
 
5. The 3 directions of cube edges that give rise to the 3 vanishing points 
are mutually perpendicular, therefore the dot product between two directions 
is zero. Show that this condition leads to an equation in which the unknown 
is the calibration matrix K. Such an equation can be written for each of the 
3 pairs of vanishing points.  
 
Note: this equation expresses that the vanishing points belong to a conic 
which is the image of the so-called absolute conic. 
 
6. The equation just found leads to nonlinear conditions 
between the elements of the matrix K, so we will not attempt to solve the 
system, but only verify that the matrix K found last week indeed is a solution.  
Verify that the equation above is verified for the vanishing points found 
in (2), for a calibration matrix in which the skew is zero, the 2 focal 
lengths are equal to 690, and the image center is at (300, 250).  
 
NOTE: If you ever need to use this method, here is how to find K. 
Let omega be the matrix that results from the combination of the inverse of K and its transpose 
in the result found in (5). 
When only one focal length and the coordinates of the image center are the unknowns,  
omega has the form [a 0 b; 0 a c; b c 1] with a, b and c unknown. These unknowns can be found 
with a system involving 3 vanishing points v1, v2 and v3. The system is of the form  
A*[a;b;c] = rhs with  
 
A = [v1(1)*v2(1) + v1(2)*v2(2), v1(3)*v2(1) + v1(1)*v2(3),  v1(3)*v2(2) + 
v1(2)*v2(3); 
       v1(1)*v3(1) + v1(2)*v3(2), v1(3)*v3(1) + v1(1)*v3(3),  v1(3)*v3(2) + 
v1(2)*v3(3); 
       v2(1)*v3(1) + v2(2)*v3(2), v2(3)*v3(1) + v2(1)*v3(3),  v2(3)*v3(2) + 
v2(2)*v3(3)]; 
and rhs = [-1;-1;-1] 
 
Then solving the system with [a;b;c] = A \ rhs provides omega. 
Finally, the inverse of K can be found from omega by Cholesky decomposition (check the help 
for the Matlab function chol). K is found by inversion of that inverse and normalizing the result 
given the fact that K(3,3) must be equal to 1.  
The result may not be as accurate as with the method described in the previous homework. In 
addition, it needs some modifications if one of the vanishing points is at infinity (which is the 
case with the image provided above). The method succeeds if the cube is positioned so that all 
vanishing points are finite, as is the case for the following cube image 
 
   cubeImage = [446, 333, 1; 204, 314, 1; 98, 462, 1; 454, 503, 1;... 
         466, 75, 1; 191, 70, 1; 56, 111, 1; 489, 123, 1] 
 
 


