Generate 65 points at intervals of 0.1 radian (theta = [0:0.1:6.4];) along an Archimedean spiral given by the equation \(r=2\theta \).

(For more on this curve see http://mathworld.wolfram.com/ArchimedesSpiral.html).

Get the \(x \) and \(y \) coordinates of your points by converting from polar coordinates to Cartesian coordinates using \(x=r \cos(\theta) \) and \(y=r \sin(\theta) \).

(In Matlab use \(x=r.*\cos(theta); \)).

1. Generate a parameterization along this curve using chord lengths.

\[
s(1) = 0, \quad s(k) = s(k-1) + \sqrt{(x_k-x_{k-1})^2 + (y_k-y_{k-1})^2}
\]

The three column vectors \(x, y \) and \(s \) sample the parametric representation of the curve \(x(s), y(s) \).

2. Using the function \texttt{polyfit} and the three vectors \(x, y \) and \(s \) fit polynomial functions of 2\(^{nd}\), 4\(^{th}\), and 16\(^{th}\) order for \(x(s) \) and \(y(s) \). Evaluate these functions at the midpoints of the chords using \texttt{polyval} and plot the resulting curve.

(Note that the link given in previous handouts at www.lanl.gov seems to be offline this week)

4. Fit cubic splines through the same data using the function \texttt{spline}, and evaluate them at the same points using \texttt{ppval}. Plot your curve.

5. You can evaluate the derivatives \(dx/ds \) and \(dy/ds \) and \(d^2x/ds^2 \) and \(d^2y/ds^2 \) along the spline by using the code snippet given at http://www.mathworks.com/support/solutions/data/3313.shtml

Implement this snippet, and evaluate \(dx/ds \) and \(dy/ds \). Next estimate \(dy/dx \) at the points \(s(1) \) through \(s(64) \) using

\[
\frac{dy}{dx} = \frac{dy/ds}{dx/ds}
\]

Compare your results with the analytical expression obtained from

\[
\frac{dy}{dx} = -\frac{2(\tan \frac{1}{2} \sqrt{(x^2+y^2)}) \sqrt{(x^2+y^2)} + x^2 + (\tan^2 \frac{1}{2} \sqrt{(x^2+y^2)}) x^2}{-2 \sqrt{(x^2+y^2)} + xy + x(\tan^2 \frac{1}{2} \sqrt{(x^2+y^2)}) y}
\]

6. Write a function that applies the Roberts operators to a given image to find the gradient components in two directions and compute the magnitude and direction of the gradient vector at every pixel. Your function should perform the non-maxima suppression step discussed in class. Convert the \texttt{flowers.tif} image to grayscale using \texttt{rgb2gray} and apply your function to it.

Write a little Matlab function to blur the image using a one-dimensional Gaussian filter with a user specified filter size. Apply your filter successively along the \(x \) and \(y \) directions with a filter size of 10. Obtain the edge image again using your function on the smoothed image.