
CMSC 828D Fundamentals of Computer Vision

 1/14

CMSC 828D: Fundamentals of Computer Vision
Homework 3

 Instructors : Larry Davis, Ramani Duraiswami,
 Daniel DeMenthon, and Yiannis Aloimonos

 Solution based on homework submitted by Haiying Liu

1. Show that in a properly focused imaging system the distance f’ from the lens to the
image plane is equal to (1+m) f, where f is the focal length and m is the magnification.
This distance is called the effective focal length. Show that the distance between the
image plane and an object must be (m + 2 + 1/m) f.

Solution: The properly focused imaging system is shown in [Figure 1].

object

Image plane

f

f ′

h

hm ⋅
⋅

d
O

A

A’

B

B’

Figure 1: Properly focused imaging system

Suppose the height of the object AB is h . Given that the magnification is m , the height of its
image A’B’ is mh . The two grayed triangles are similar. Thus, we have:

fmf
mh

f
hmh

fff
h
f

mh
ff

)1(
)1(

''

+=′⇒
+

=
+
+−

==
−′

Because the object AB is parallel to the image plane A’B’, the triangle OAB is similar to the
triangle OA’B’. Therefore, we have:

m
mf

fd
mh

fd
mh
f

h
d)1('

'
)1(
'' +

=+⇒
+

+
==

Substitute f ′ in the above equation by () fm+1 ,

CMSC 828D Fundamentals of Computer Vision

 2/14

f
m

m

m
fm

fdBB







 ++=

+
=+=′

1
2

)1(
'

2

For unit magnification, i.e. 1=m , we have

ffmf
m
f

d
m

m

2)1(
1

1

=+=′=
′

=
=

=

The object must be f2 far from the lens for unit magnification.

2. What shapes can the perspective image of a sphere have? …

Solution: A point of the sphere has an image on the contour of the image of the sphere if the
line of sight for this point is tangent to the shape of the object. The locus of the lines of sight
tangent to a sphere is a cone of revolution. The intersection of this cone of revolution with the
image plane is the contour of the image of the sphere. The intersection of a cone and a plane
is called a conic. If the sphere is one side of the image plane and the center of projection is on
the other side, this conic cannot be a parabola or a hyperbola, and can only be an ellipse (a
circle being just a special ellipse obtained when the image plane cuts the cone at a 90 degree
angle to the cone axis).

 Z Z

Image
plane

Image
plane

Center of
projection

Center of
projection

Figure 2: Perspective image of a sphere.

3. Perspective effects can be significant when a wide-angle lens is used, while images
obtained with a telephoto lens tends to approximate orthographic projection. Explain
why these are only rough rules of thumb.

Solution: The wide-angle lens is a lens with small focus length. The telephoto lens on the
other hand has a very long focal length. Therefore, for a given film size or a given CCD chip
size, a camera has a field of view with a large angle with a wide-angle lens, can see a large
chunk of the world and can see even large objects. With a telephoto lens, a camera has a field
of view with a small angle; all the lines of sight are almost parallel to the optical axis. Lines

CMSC 828D Fundamentals of Computer Vision

 3/14

from scene points to the center of projection at large angles from the optical axis don’t hit the
camera film and large objects close to the camera don’t fit in the image.

How can we quantify perspective effects? Consider a road straight in front of you, with
telephone poles of height H along the road at intervals D from each other. The length of a
phone pole at a distance Z from the camera in the image is f H/Z, and the length of the next
one is f H/(Z+D). The ratio of the lengths in the image of the two phone poles is 1+D/Z. D/Z
represents the perspective distortion for the two phone poles: their length ratio is 1 in the real
world but is “distorted” by D/Z in the image world. The closer the poles are, the smaller Z is,
and the larger the distortion. Note that this distortion is independent of the focal length. This
is not surprising, since by looking at the equations of perspective projection, we see that the
focal length is only a scaling factor, and changing the focal length only changes the scale of
things in the image. But with a wide-angle lens the phone poles will fit in the image even if
they are close to the camera, so we will be able to take pictures even when there are large
perspective distortions. With a telephoto lens only far away phone poles will fit in the image.
The rules of thumb above aply if, with each type of lens, we try to position ourselves with
respect to an object so that the object always fills out most of the image (which is good
photographic practice). If on the other hand we have two phone poles at 100 m that just fit in
the image with a telephoto lens, switch to a wide angle lens and don’t move at all, we will get
an image with the same persective distortion (but at a different scale, with much smaller
phone poles).

3. You see a first image of a cube with a pinhole camera with focal length f. Then you
rotate the camera around its center of projection to obtain new images.

(a) Do the lines of sight change? Can you get any new information about the cube by
this camera motion? Can you see a new facet that you were not seeing in the first
image?

Solution: In a rotation around the center of projection, the center of projection does not
change, and the scene of course does not change, so lines from the center of projection to the
scene (the lines of sight) do not change. All the information about the cube is contained in the
lines of sight. If we are given an image of a scene, we can compute what the scene looks like
after such a rotation without additional knowledge from the scene, as illustrated by The sight
line of a visible point in space, say P, will pass through the center of projection. The
correspondent image point (the p in the first image and p’ in the second image) is the
intersection point of the sight line and the image plane. If a point in space is occluded in the
first image, it will still be occluded after this rotation, since the center of projection remains
unchanged. This is illustrated in [Figure 3]. This also explains why we cannot see any new
facet that we do not see in the first image after this rotation.

CMSC 828D Fundamentals of Computer Vision

 4/14

A point P in space

Z

x

Z’
x’

y’

y

Center of
projection O

Image plane 1

Image plane 2

p p’

If the P is occluded, it is
always occluded, as long
as the center of projection
remains unchanged.

Rotate
around O

Y

Figure 3: Rotate the camera around its center of projection to get new images.

(b) Assume that a vertex V of the cube is seen as a point with coordinates (x, y) in the
first image. The camera is then rotated around a rotation axis going through the center
of projection and parallel to the y axis of the image plane, so that the unit vector k
perpendicular to the image plane becomes a new vector k’. The unit vector of the y axis
is a known vector j. What are the new coordinates of the image of V after the rotation,
as functions of x, y, j, k and k’.

Solution: Denote the world coordinate originated at the center of projection C by),,(ZYX
with unit vectors i, j and k before the rotation, and),,(ZYX ′′′ with unit vectors i’, j’=j and
k’ after the rotation. Denote the image of the vertex V as a point m with image coordinates

),,(fyx before the rotation, and the image of V as a point m’ with coordinates),,(fyx ′′
after the rotation. We have: Cm = x i + y j + f k, Cm’ = x’ i’ + y’ j + f k’

Since m and m’ are the intersection of the same line by two different planes, Cm and Cm’ are
aligned, and we can write Cm’ = λ Cm. Also note that the dot product of Cm’ with the
vector k’ is the z-coordinate of m’, which is equal to f. We use that fact to compute λ. We
obtain Cm’.k = λ Cm.k’ = f so that λ = f / Cm.k’=f/(x i.k’+ f k.k’)

Cm’ = λ Cm becomes x’ i’ + y’ j + f k’ = f (x i + y j + f k) /(x i.k’+ f k.k’)

Then one obtains x’ by taking the dot product of this equation with i’, and similarly one
obtains y’ by multiplying the equation with j. We also replace i and i' by the cross-products
j× k and j× k’. Also, we use the fact that (j× k). k’ is equal to j.(k× k’).

Therefore,

CMSC 828D Fundamentals of Computer Vision

 5/14











′+×
=′

′+×

×−
=

′+

+
=′

kkk'kj.

kkk'kj.

k'kj. k'k,

kkk'i,

i'k,i'i,

,)(

,)(

)(

,

fx
y

fy

fx

fx
f

fx

fx
fx

.

4. Using Matlab, and the result of problem 4, create the image you would obtain if the
camera that took the image ‘flowers.tif’ (converted to grayscale) were to be rotated by
10 degrees to the left around its center of projection. (Set the pixels that were not visible
in the first image to white. Set the focal length to 250 pixels.

Solution: The original image and the image after the camera rotation is shown in [Figure 4].
The Matlab code is listed in Appendix. Linear sub-pixel interpolation is used to get more
accurate intensity value. It is assumed that the origin of image coordinates is at the center of
the image.

Figure 4: Camera rotate 10° to the left around the camera's center of projection.

5. Estimate the number of operations …

Solution: According to the recursive algorithm (determinant expansion by minors) explained
in class, for an NN × matrix M = []ijm , its determinant can be calculated by:

∑∑
= =

+−=
N

i

N

j
ijij

ji m
1 1

)1(MM

where ijM is a matrix formed by eliminating row i and column j from M . The above

equation has 2N multiplications and 12 −N additions. Recursively using the equation, for
each ijM , there are ()21−N multiplication and () 11 2 −−N addition, and so on. Therefore,

there are totally () ()222 !11 NNN =⋅⋅−⋅ K multiplications and

() ()() ()()222 !111 NONN =⋅−−⋅− K additions. It is much bigger than an algorithm that

requires only 3N .

6. In Matlab, explore the following matrix decompositions and …

Solution: The mathematical definition of the decompositions are listed in the following table:

CMSC 828D Fundamentals of Computer Vision

 6/14

Decomposition Definition

LU
A procedure for decomposing an NN × matrix A into a product of a
lower triangular matrix L and an upper triangular matrix U , such that

LUA = . It is useful in solving linear equations.

Cholesky
Given a symmetric positive definite matrix A , the Cholesky
decomposition is an upper triangular matrix U such that UUA T= . It is
useful in solving linear equations.

Eigenvalue

Let A be a linear transformation represented by a matrix A . If there is a
vector 0≠∈ nRX such that XAX λ= for some scalar λ , then λ is
called the eigenvalue of A with corresponding (right) eigenvector X . It
reflects the “character” of the matrix.

QR

Given a matrix A , its QR-decomposition is of the form QRA = , where
R is an upper triangular matrix and Q is an orthogonal matrix, i.e., one
satisfying IQQ =T , where I is the identity matrix. This matrix
decomposition can be used to solve linear systems of equations.

SVD

A decomposition of a matrix A into the form DVUA *= , where U is a
unitary matrix (i.e. 1UU −=*), *U is its adjoint matrix, and D is a
diagonal matrix whose elements are the singular values of the original
matrix. It is also useful for solving linear equations.

The script of examples and results are listed in Appendix.

7. The eigenvalues of a matrix A can be …

Solution: Assume 







=

2221

1211

aa
aa

A , we have

()()
() ()

() ()

() ()










−−+−+
=

−−+++
=

⇒

=−++−⇒

=−−−⇒

=
−

−
⇒

=







−








⇒

=−

2
4

2
4

0

0

0

0
0

0

0

21122211
2

22112211
2

21122211
2

22112211
1

211222112211
2

21122211

2221

1211

2221

1211

aaaaaaaa

aaaaaaaa

aaaaaa

aaaa

aa
aa

aa
aa

λ

λ

λλ

λλ

λ
λ

λ
λ

λ IA

CMSC 828D Fundamentals of Computer Vision

 7/14

The Matlab function that returns eigenvalues of any 2 by 2 matrix is listed in Appendix,
followed by an example.

8. Read chapter 2.0 through chapter 2.3 of Numerical recipes…

Solution: Done.

CMSC 828D Fundamentals of Computer Vision

 8/14

Appendix:

• Question 5
function hw3_5
%
% CMSC 828D: Fundamentals of Computer Vision
% Homework3
%
% Instructors : Larry Davis, Ramani Duraiswami,
% Daniel DeMenthon, and Yiannis Aloimonos
% Student : Haiying Liu
%
% Date : Sept. 16, 2000
%

%%

%===
%= Qustion no.5

% Read image from file.
image = imread('flowers.tif');

% Convert the color image into gray scale image.
image = rgb2gray(image);

% Convert the data type from uint8 to double.
image = double(image);

% Rotate.
% ..Initialize parameters.
f = 250;
theta = (-10) * pi / 360;
cos_theta = cos(theta);
sin_theta = sin(theta);

image_2 = zeros(size(image));

% Get image size.
nRow = size(image, 1);
nCol = size(image, 2);

half_nRow = nRow ./ 2;
half_nCol = nCol ./ 2;

% The origin of matrix is at upper left size
% while the origin of the image is at center.
for row2 = 1:nRow
 for col2 = 1:nCol
 yy = row2 - half_nRow;
 xx = col2 - half_nCol;

 x = (xx * f * cos_theta + f * f * sin_theta) / ...
 (f * cos_theta - xx * sin_theta);
 y = (yy * x * sin_theta + yy * f * cos_theta) / f;

 row1 = y + half_nRow;
 col1 = x + half_nCol;

 if 1 <= col1 & col1 <= nCol & 1 <= row1 & row1 <= nRow
 % ..When inside the image 1,
 % ..linearly interpolate to get sub_pixel gray level.

CMSC 828D Fundamentals of Computer Vision

 9/14

 up = floor(row1);
 down = up + 1;
 left = floor(col1);
 right = left + 1;

 if down <= nRow & right <= nCol
 intensity_1 = image(up, left);
 intensity_2 = image(down, left);
 leftIntensity = (row1 - up) * ...
 (intensity_2 - intensity_1) + intensity_1;

 intensity_1 = image(up, right);
 intensity_2 = image(down, right);
 rightIntensity = (row1 - up) * ...
 (intensity_2 - intensity_1) + intensity_1;

 intensity = (col1 - left) * ...
 (rightIntensity - leftIntensity) + leftIntensity;
 else
 intensity = image(round(row1), round(col2));
 end
 else
 % ..When ouside the image 1,
 % ..set the gray_level to be white.
 intensity = 255;
 end

 image_rotate(row2, col2) = intensity;
 end
end

% Display the result.
figure;

subplot(1, 2, 1);
imshow(image ./ 255);
title('Flowers');
axis on;
axis image;

subplot(1, 2, 2);
imshow(image_rotate ./ 255);
title('Flowers after the 10 degree rotation');
axis on;
axis image;

CMSC 828D Fundamentals of Computer Vision

 10/14

• Question 7

function hw3_7
%
% CMSC 828D: Fundamentals of Computer Vision
% Homework3
%
% Instructors : Larry Davis, Ramani Duraiswami,
% Daniel DeMenthon, and Yiannis Aloimonos
% Student : Haiying Liu
%
% Date : Sept. 16, 2000
%

%%

%===
%= Qustion no.7

diary hw3_7.txt

% Generate a random matrix.
matrix = rand(5)

% Generate a symmetric random matrix.
temp = rand(5);
temp_l = tril(temp);
temp_u = temp_l';
matrix_sym = temp_l + temp_u
matrix_sym_pos_def = matrix_sym' * matrix_sym

% LU
disp('######');
disp('# LU #');
disp('######');
[L, U] = lu(matrix)

% Cholesky
disp('############');
disp('# Cholesky #');
disp('############');
U = chol(matrix_sym_pos_def)

% Eigenvalue
disp('##############');
disp('# Eigenvalue #');
disp('##############');
eigenvalue = eig(matrix)

% QR
disp('######');
disp('# QR #');
disp('######');
[Q, R] = qr(matrix)

% SVD
disp('#######');
disp('# SVD #');
disp('#######');
[U, S, V] = svd(matrix)

diary off;

CMSC 828D Fundamentals of Computer Vision

 11/14

Example:

matrix =

 0.7184 0.3058 0.4562 0.8829 0.4935
 0.9741 0.0802 0.5078 0.7343 0.7427
 0.3277 0.9341 0.6627 0.6582 0.8210
 0.3344 0.1020 0.4170 0.9284 0.1868
 0.7906 0.9477 0.4966 0.7179 0.9243

matrix_sym =

 0.8161 0.6743 0.1632 0.1193 0.4677
 0.6743 1.3561 0.0031 0.8846 0.0224
 0.1632 0.0031 0.0191 0.8012 0.2359
 0.1193 0.8846 0.8012 0.2988 0.2222
 0.4677 0.0224 0.2359 0.2222 0.6882

matrix_sym_pos_def =

 1.3803 1.5811 0.3443 0.9641 0.7837
 1.5811 3.0766 0.8283 1.5518 0.5584
 0.3443 0.8283 0.7245 0.3293 0.4213
 0.9641 1.5518 0.3293 1.5773 0.4839
 0.7837 0.5584 0.4213 0.4839 0.7979

LU #

L =

 0.7375 0.2719 0.1321 0.5329 1.0000
 1.0000 0 0 0 0
 0.3364 1.0000 0 0 0
 0.3433 0.0821 -0.5133 1.0000 0
 0.8116 0.9730 1.0000 0 0

U =

 0.9741 0.0802 0.5078 0.7343 0.7427
 0 0.9071 0.4919 0.4112 0.5712
 0 0 -0.3943 -0.2782 -0.2343
 0 0 0 0.4998 -0.2353
 0 0 0 0 -0.0533

############
Cholesky #
############

U =

 1.1749 1.3457 0.2930 0.8206 0.6671
 0 1.1250 0.3857 0.3977 -0.3016
 0 0 0.6999 -0.0922 0.4889
 0 0 0 0.8586 0.1182
 0 0 0 0 0.0950

##############
Eigenvalue #

CMSC 828D Fundamentals of Computer Vision

 12/14

##############

eigenvalue =

 2.9396
 -0.4482
 0.3927 + 0.1870i
 0.3927 - 0.1870i
 0.0372

QR #

Q =

 -0.4728 -0.1229 -0.0322 -0.3427 -0.8018
 -0.6410 -0.4934 -0.0629 0.5393 0.2256
 -0.2156 0.7203 -0.5074 0.3993 -0.1335
 -0.2200 -0.0966 -0.6301 -0.6022 0.4273
 -0.5203 0.4619 0.5836 -0.2638 0.3253

R =

 -1.5195 -0.9129 -1.0342 -1.6078 -1.4084
 0 1.0236 0.3598 0.2452 0.5732
 0 0 -0.3559 -0.5747 -0.0575
 0 0 0 -0.3923 0.2029
 0 0 0 0 0.0427

#######
SVD #
#######

U =

 0.4222 -0.3202 -0.1009 -0.3332 0.7733
 0.4514 -0.4844 0.5612 0.4655 -0.1731
 0.4748 0.5692 -0.3065 0.5689 0.1816
 0.2982 -0.4350 -0.7136 -0.0518 -0.4583
 0.5511 0.3869 0.2678 -0.5882 -0.3591

S =

 3.1290 0 0 0 0
 0 0.9184 0 0 0
 0 0 0.5655 0 0
 0 0 0 0.2216 0
 0 0 0 0 0.0258

V =

 0.4583 -0.3864 0.6134 -0.3693 0.3578
 0.3712 0.7811 -0.1612 -0.4325 0.1978
 0.3626 -0.0044 -0.2277 0.6670 0.6098
 0.5398 -0.4244 -0.6172 -0.2178 -0.3163
 0.4789 0.2461 0.4061 0.4292 -0.6008

CMSC 828D Fundamentals of Computer Vision

 13/14

• Question 8

eig_2by2.m:
function [lambda] = eig_2by2(A)
%
% CMSC 828D: Fundamentals of Computer Vision
% Homework3
%
% Instructors : Larry Davis, Ramani Duraiswami,
% Daniel DeMenthon, and Yiannis Aloimonos
% Student : Haiying Liu
%
% Date : Sept. 16, 2000
%

%%

%===
%= Qustion no.8

diary hw3_8.txt

a11 = A(1, 1);
a12 = A(1, 2);
a21 = A(2, 1);
a22 = A(2, 2);

lambda = zeros(2, 1);
lambda(1) = ((a11 + a22) + sqrt((a11 + a22) .* (a11 + a22) - 4 * (a11 * a22 - a12 *
a21))) / 2;
lambda(2) = ((a11 + a22) - sqrt((a11 + a22) .* (a11 + a22) - 4 * (a11 * a22 - a12 *
a21))) / 2;

hw3_8:
function hw3_8
%
% CMSC 828D: Fundamentals of Computer Vision
% Homework3
%
% Instructors : Larry Davis, Ramani Duraiswami,
% Daniel DeMenthon, and Yiannis Aloimonos
% Student : Haiying Liu
%
% Date : Sept. 16, 2000
%

%%

%===
%= Qustion no.8

diary hw3_8.txt

% Generate a random matrix.
A = rand(2)

% Compute eigenvalue by eig_2by2.m
disp('###############');
disp('# by eig_2by2 #');
disp('###############');
eig_2by2(A)

% Compute eigenvalue by Matlab function eig.m

CMSC 828D Fundamentals of Computer Vision

 14/14

disp('##########');
disp('# by eig #');
disp('##########');
eig(A)

diary off;

Example:

A =

 0.8959 0.0073
 0.4550 0.8388

###############
by eig_2by2 #
###############

ans =

 0.9318
 0.8029

##########
by eig #
##########

ans =

 0.9318
 0.8029

