
CMSC 828D Fundamentals of Computer Vision 1

CMSC 828D: Fundamentals of Computer Vision
Homework 10

Instructors: Larry Davis, Ramani Duraiswami,
Daniel DeMenthon, and Yiannis Aloimonos

Solution based on homework submitted by Haiying Liu

1. A sphere of Lambertian material of radius R lies on the ground. …

a. Write the function),(yxfz = that represents the half of the sphere that is visible
from the camera.

Solution: The geometry of the sphere and camera is shown in the [Figure 1].

y

x

z

x

z
y

D

c

45°

45°

camera
sun light

R

Figure 1: Geometry of the sphere and the camera.

In the coordinate originated at the center of the sphere, the coordinate),,(zyx ′′′ of a point in the

surface satisfied 2222 Rzyx =′+′+′ . For the upper half part of visible surface, we have negative

z′ , i.e. 222),(yxRyxfz ′−′−−=′′=′ . The relationship between this coordinate the camera

coordinate is a translation),0,0(D . Thus the function 222),(yxRDyxfz −−−==

b. Write the 3 coordinates of a unit normal to the sphere surface for a point to the
sphere seen at a pixel),(yx .

Solution: Using the result from (a), we have

CMSC 828D Fundamentals of Computer Vision 2

222

222

yxR

y
y
f

q

yxR

x
x
f

p

−−
=

∂
∂

=

−−
=

∂
∂

=

The normal is ()1,, −qp , and the unit normal is

() () ()
R

yxRyx

qp

qp
yx

222

22

,,

1

1,,
,

−−−
=

++

−
=n

c. Write a Matlab function that gives the gray level due to …

Solution: Note the normal of light source is

() ()21,5.0,5.045sin,45sin45cos,45cos45cos −=−= ooooo
sn .

The brightest point is located at () () ()RRRRyx ,
2
1

45sin45cos,45cos45cos, 00 =⋅⋅⋅⋅= oooo ,

where 128
2

256
==R pixels. According to the relationship between pixel brightness and scene

brightness, we have:

255
0cos

255

(white)255cos),(
000

==

⇒==
=

k

kyxI
θ

θ

Then, every other point can be calculated by the known k :

 ()
() ()
() ()

() ()




 ≥•

⋅
•

=
otherwise ,0

0,, if ,
,,
,,

,
yxyx

yxyx
yxyx

k
yxI s

s

s nn
nn
nn

.

The Matlab function is listed in appendix.

d. Write a Matlab function that generates the image of the sphere and a black
background.

Solution: The Matlab function is listed in appendix. The image is shown below.

CMSC 828D Fundamentals of Computer Vision 3

Figure 2: The image of the sphere with Lambertian surface.

2. Now a face made of plaster with Lambertian reflecting properties …

a. Transform the image into a gray level images. …

Solution: The face image is converted into gray level image and rescaled to [0, 1]. Note that the
face is flipped to conform the same orientation in Problem 1, so that the equations derived in
class can be used directly. The center of the cross is the tip of the nose.

b. Assume that the face is symmetrical with …

Solution: Since the face is symmetrical, the horizontal component of the normal on the curve C
is zero, i.e. 0=p . According to the relationship between normal and pixel brightness
(reflectance map), we have:

()
()()

() ()() ()

() ()
()()

()cq
ccqqq

q

cqqqcq

qqp
k
I

qq

qqp
qq

kI

qqp

qq
k

qpqp

qqpp
kI

s

sss

ss

qp
k
I

csss

ss

s

ss

s

pss

ss

ss

−
−−−±−

=

⇒−++−=

⇒+++=+

⇒
+++

+
=

⇒
+++

+
=

++++

++
=

++=

=

2

22

2,1

22

1
222

2

2
2

222

2
22

222

0

2222

4
1442

120

111

11
1

11

1

11

1

22
2

2

i.e. for each gray level along curve C , there are generally two possible unit normals ()1,,0 1 −q
and ()1,,0 2 −q .

The Matlab function is listed in appendix.

c. Find a location along curve C where the surface patch faces the camera and …

CMSC 828D Fundamentals of Computer Vision 4

Solution: In class, we have derived that qdypdxdz += . In our case, since 0=p along the
curve C , qdydz = . For a reference point at the tip of nose, we can calculate the relative position
(dz) of other points along the curve C .

The Matlab function is listed in appendix. The profile of the face is rearranged as required and
shown above.

CMSC 828D Fundamentals of Computer Vision 5

Appendix
• hw10_1.m

function hw10_1
% Syntax: hw10_1
%
% Description: CMSC828D HW10_1
%
% Author: Haiying Liu
% Date: Nov. 13, 2000
%

%%%

dbstop if error

msg = nargchk(0, 0, nargin);
if (~isempty(msg))
 error(strcat('ERROR:', msg));
end

clear msg;

%==

I = ComputeBrightness;

figure;
imshow(I, []);
xlabel('x');
ylabel('y');

print -djpeg hw10_1;

%%%

function I = ComputeBrightness
% Syntax: I = ComputeBrightness
%
% Description: Compute the brightness of a lambertian sphere surface.
%
% Author: Haiying Liu
% Date: Nov. 13, 2000
%

%%%

dbstop if error

msg = nargchk(0, 0, nargin);
if (~isempty(msg))
 error(strcat('ERROR:', msg));
end

clear msg;

CMSC 828D Fundamentals of Computer Vision 6

%==

% Initialization
imSz = 256;
white = 255;
global R;
R = imSz / 2;
theta = 45 * pi / 180;
ns = [cos(theta) * cos(theta), cos(theta) * sin(theta), -sin(theta)];

% Compute k
x0 = R * cos(theta) * cos(theta);
y0 = R * cos(theta) * sin(theta);

n_xy = ComputeNorm(x0, y0);
k = white / (n_xy * ns');

I = ones(imSz) * (white + 1);

% Compute brightness
for row = 1:imSz
 for col = 1:imSz

 y = row - R;
 x = col - R;

 if x * x + y * y < R * R
 n_xy = ComputeNorm(x, y);
 I(row, col) = k * (n_xy * ns');
 if I(row, col) < 0
 I(row, col) = 0;
 end
 end

 end
end

% Rescale the brightness to minI~255;
dark = min(I(:))
I = (I == white + 1) .* dark + (I < white + 1) .* I;

%%%

function n_xy = ComputeNorm(x, y)
% Syntax: n_xy = ComputeNorm(x, y)
%
% Description: Compute the norm of the point on the sphere surface.
%
% Author: Haiying Liu
% Date: Nov. 13, 2000
%

%%%

dbstop if error

msg = nargchk(2, 2, nargin);

CMSC 828D Fundamentals of Computer Vision 7

if (~isempty(msg))
 error(strcat('ERROR:', msg));
end

clear msg;

%==

global R;

temp = sqrt(R * R - x * x - y * y);
p = x / temp;
q = y / temp;
n_xy = [p, q, -1];
n_xy = n_xy ./ norm(n_xy);

• hw10_2.m
function hw10_2
% Syntax: hw10_2
%
% Description: CMSC828D HW10_2
%
% Author: Haiying Liu
% Date: Nov. 14, 2000
%

%%%

dbstop if error

msg = nargchk(0, 0, nargin);
if (~isempty(msg))
 error(strcat('ERROR:', msg));
end

clear msg;

%==
%= Part a.

% Read the image.
face = imread('FACE.jpeg');
face = rgb2gray(face);
face = double(face);

% Smooth the image by the wiener filter to reduce the noise
% introduced by JPEG compression.
face = wiener2(face, [5, 5]);

% Rescale it to dark~white;
white = 1;
dark = 0;
maxI = max(face(:));
minI = min(face(:));
face = (face - minI) * (white - dark) / (maxI - minI) + dark;

CMSC 828D Fundamentals of Computer Vision 8

% Flip the face so that it has the same orientation as Problem 1,
% so that the equations can be directly applied.
face = fliplr(face);
face = flipud(face);

nRow = size(face, 1);
nCol = size(face, 2);

% Show the face.
figure;
imshow(face, []);

%==
%= Part b.

% See function Compute_n below.
%Compute_n(0.6) % e.g.

%==
%= Part c.

% Find the nose tip faces the camera.
curveC_x = nCol - 68 + 1; % plane P

noseTipRow = 0; % Initialization
noseTip_n = [0, 0, 0]; % Initialization
idealNoseTip_n = [0, 0, -1];
noseTipRowRange = [67, 77];

minDiff = Inf;

for row = noseTipRowRange(1):noseTipRowRange(2)
 intensity = face(row, curveC_x);
 q = Compute_q(intensity);
 for index = 1:2
 n = [0, q(index), -1];
 diff = norm(n / norm(n) - idealNoseTip_n);
 if diff < minDiff
 minDiff = diff;
 noseTipRow = row;
 noseTip_n = n;
 end
 end
end

% Mark out the nose tip.
hold on;
plot([0, nCol], [noseTipRow, noseTipRow], 'w');
plot([curveC_x, curveC_x], [0, nRow], 'w');

print -djpeg hw10_2a;

% Compute profile.
faceRowRange = [11, 171];
z = zeros(nRow, 1);
last_n = noseTip_n;

CMSC 828D Fundamentals of Computer Vision 9

% From nose tip to forehead. (note the face is upside down)
for row = noseTipRow + 1:faceRowRange(2)
 intensity = face(row, curveC_x);
 q = Compute_q(intensity);

 n1 = [0, q(1), -1];
 n2 = [0, q(2), -1];

 unit_last_n = last_n / norm(last_n);

 if norm(n1 / norm(n1) - unit_last_n) < ...
 norm(n2 / norm(n2) - unit_last_n)
 dz = q(1);
 last_n = n1;
 else
 dz = q(2);
 last_n = n2;
 end

 z(row) = z(row - 1) + dz;
end

% From nose tip to chin. (note the face is upside down)
for row = noseTipRow - 1:-1:faceRowRange(1)
 intensity = face(row, curveC_x);
 q = Compute_q(intensity);

 n1 = [0, q(1), -1];
 n2 = [0, q(2), -1];

 unit_last_n = last_n / norm(last_n);

 if norm(n1 / norm(n1) - unit_last_n) < ...
 norm(n2 / norm(n2) - unit_last_n)
 dz = -q(1);
 last_n = n1;
 else
 dz = -q(2);
 last_n = n2;
 end

 z(row) = z(row + 1) + dz;
end

% Rearrange the profile, so that the forehead is at
% origin of (y, z) corrdinate system.
profile = z(faceRowRange(2):-1:faceRowRange(1));
profile = profile - profile(1); % take forehead as origin of (y, z)

figure;
nPoint = size(profile, 1);
plot([1:nPoint], profile);
axis ij;
axis equal;
xlabel('y');
ylabel('z');

CMSC 828D Fundamentals of Computer Vision 10

print -djpeg hw10_2b;

%%%

function q = Compute_q(I)
% Syntax: q = Compute_q(I)
%
% Description: Compute the two q's accordint to the intensity.
%
% Author: Haiying Liu
% Date: Nov. 14, 2000
%

%%%

dbstop if error

msg = nargchk(1, 1, nargin);
if (~isempty(msg))
 error(strcat('ERROR:', msg));
end

clear msg;

global white;

%==

% Compute unit normal for light source ns = [ps, qs, rs].
theta = 45 * pi / 180;
ps = cos(theta) * cos(theta);
qs = cos(theta) * sin(theta);
rs = -sin(theta);

% Compute q.
% The two norm will be in the form of [0, q, -1].
c(1) = qs * qs - I * I;
c(2) = -2 * qs * rs;
c(3) = rs * rs - I * I;
q = roots(c);

%%%

function n_unit = Compute_n(I)
% Syntax: n_unit = Compute_n(I)
%
% Description: Compute the unit normal from the intensity.
%
% Author: Haiying Liu
% Date: Nov. 14, 2000
%

%%%

dbstop if error

CMSC 828D Fundamentals of Computer Vision 11

msg = nargchk(1, 1, nargin);
if (~isempty(msg))
 error(strcat('ERROR:', msg));
end

clear msg;

global white;

%==

% Compute unit normal for light source ns = [ps, qs, rs].
q = Compute_q(I);
nRow = size(q, 1);
n = [zeros(nRow, 1), q, -ones(nRow, 1)];
for index = 1:nRow
 n_unit(index, :) = n(index, :) / norm(n(index, :));
end

