CMSC 828D HOMEWORK 1/15 FALL 2000

Handed out August 30, 2000 Due back September 6 2000 Introduction to Matlab

Matlab (http://www.mathworks.com) is available on the UNIX workstations at CFAR and UMIACS, on some PCs in labs and on the PCs in the Jasmine Laboratory (Room 2446 A.V. Williams)

A color postscript printer is available in Room 2109 A.V. Williams and is accessible from UMIACS and CFAR machines.

Spend an hour playing with Matlab.

- Use the following help commands:
  - 1) help inside the program: E.g. >> help edge
  - 2) pdf help files (either on the web or locally)
     http://www.mathworks.com/access/helpdesk/help/fulldocset.
     shtml

UNIX: /usr/imports/matlab/help/techdoc/pdfdocs
PC: C:\MATLABR11\help\pdf doc

- 3) html help (type helpdesk inside the program)
- See the demo of Matlab and the image processing toolbox by typing
   >> demo
- Figure out how you can print homework output and results from Matlab

M files are Matlab scripts or functions. You can see the contents of Matlab's built in functions by using the command type, e.g. >> type edge to see how the edge finding function is implemented

It is a good idea to do most of your work in a script file so that you can avoid a lot of typing.

For the homework problems below you will need to submit script/function files and figures (if required).

1) Create random vectors 'a' and 'b' of length 10 and a square matrix 'A' of dimension 10  $\times$  10 by using the rand command.

a=rand(10,1), etc.

Execute the following commands

a\*b a.\*b a/b a\*b' a/A

Explain what these commands do

2) Colon notation

Execute the following commands

1:10 a(1:5) a(4:9)+b(1:6) 0.1:0.1:100

Explain what these commands do

# 3) Boolean variables

Execute

```
bga=b>a
Ib=find(bga)
b(Ib)
```

what do you get? Explain the results of the three commands.

### 4) Image:

Create a random gray level image I (elements in the range 0-255) of size 256x128 using the rand command. Convert this image to type uint8. Display it using the commands image(I) imshow(I)

What differences do you see?

#### 5) Function:

Write a function that will return the roots of a general quadratic equation given the coefficients of the equation. Make your program as general as you can.

## 6) advantage of vectorization

For problem 3, write a function that explicitly uses for loops to achieve the same result.

### 7) Finally a bit of fun

Execute

```
>>bench(20)
```

and submit the results you get.

Also write down the type of machine you executed the command on (by hand) on your output.

Remember: Print out your images and any script files for all these problems and submit them.