

Ideal Points and Line at Infinity

- With projective geometry, two lines always meet in a single point, and two points always lie on a single line.
- This is not true of Euclidean geometry, where parallel lines form a special case.

	Special Projectivities		
Projectivity 8 dof	$\begin{bmatrix} h_{11} & h_{12} & h_{13} \\ h_{21} & h_{22} & h_{23} \\ h_{31} & h_{32} & h_{33} \end{bmatrix}$	Invariants Collinearity , Cross-ratios	
Affine transform 6 dof	$\begin{bmatrix} a_{11} & a_{12} & t_x \\ a_{21} & a_{22} & t_x \\ 0 & 0 & 1 \end{bmatrix}$	Parallelism, Ratios of areas, Length ratios	
Similarity 4 dof	$\begin{bmatrix} s r_{11} & s r_{12} & t_x \\ s r_{21} & s r_{22} & t_y \\ 0 & 0 & 1 \end{bmatrix}$	Angles, Length ratios	<mark>_</mark> - - ♦
Euclidean transform 3 dof	$ \begin{bmatrix} r_{11} & r_{12} & t_x \\ r_{21} & r_{22} & t_y \\ 0 & 0 & 1 \end{bmatrix} $	Angles, Lengths, Areas	

Projective Space $P_{\rm r}$ الألاح مع أعم مع أعم م A point in a projective space P_n is represented by a vector of n+1

- coordinates $\mathbf{x} = (x_1, x_2, \cdots, x_{n+1})$
- At least one coordinate is non zero.
- Coordinates are called homogeneous or projective coordinates
- Vector **x** is called a coordinate vector
- Two vectors $\mathbf{x} = (x_1, x_2, \dots, x_{n+1})$ and $\mathbf{y} = (y_1, y_2, \dots, y_{n+1})$ represent the same point if and only if there exists a scalar \mathbf{I} such that $x_i = \mathbf{I} y_i$

The correspondence between points and coordinate vectors is not one to one.

Projective Geometry in 1D Points *m* along a line Add up one dimension, consider origin at distance 1 from line Represent **m** as a ray from the origin (0, 0): $\mathbf{x} = (x_1, x_2)$ X = (1,0) is point at infinity Points can be written X = (a, 1), where *a* is abscissa along the line

