Projective Geometry

Overview

- Tools of algebraic geometry
- Informal description of projective geometry in a plane
- Descriptions of lines and points
- Points at infinity and line at infinity
- Projective transformations, projectivity matrix
- Example of application
- Special projectivities: affine transforms, similarities, Euclidean transforms
- Cross-ratio invariance for points, lines, planes
- A vector parallel to intersection of 2 planes (a, b, c) and ($a^{\prime}, b^{\prime}, c^{\prime}$) is obtained by cross- product
$\left(a^{\prime \prime}, b^{\prime \prime}, c^{\prime \prime}\right)=(a, b, c) \times\left(a^{\prime}, b^{\prime}, c^{\prime}\right)$

Tools of Algebraic Geometry 1

- Projective geometry describes objects "as they appear"
- Lengths, angles, parallelism become "distorted" when we look at objects
- Mathematical model for how images of the 3D world are formed.
- Euclidean geometry describes shapes "as they are"
- Properties of objects that are unchanged by rigid motions
» Lengths
» Angles
» Parallelism

Euclidean versus Projective Geometry

 , Geomery

- Plane passing through origin and perpendicular to vector $\mathbf{n}=(a, b, c)$ is locus of points $\mathbf{x}=\left(x_{1}, x_{2}, x_{3}\right)$ such that $\quad \mathbf{n} \bullet \mathbf{x}=0$

$$
\Rightarrow a x_{1}+b x_{2}+c x_{3}=0
$$

- Plane through origin is completely defined by (a, b, c)

Projective Geometry

Properties

- Point \mathbf{X} belongs to line \mathbf{L} if $\mathbf{L} . \mathbf{X}=0$
- Equation of line \mathbf{L} in projective geometry is $a x_{1}+b x_{2}+c x_{3}=0$
- We obtain homogeneous equations

Projective Geometry in 2D

- The rays $\mathbf{x}=\left(x_{1}, x_{2}, x_{3}\right)$ and $\mathbf{X}=\left(\lambda x_{1}, \lambda x_{2}, \lambda x_{3}\right)$ are the same and are mapped to the same point \boldsymbol{m} of the plane \boldsymbol{P}
- \boldsymbol{X} is the coordinate vector of $\boldsymbol{m},\left(x_{1}, x_{2}, x_{3}\right)$ are its homogeneous coordinates
- The planes (a, b, c) and $(\lambda a, \lambda b, \lambda c)$ are the same and are mapped to the same line \boldsymbol{l} of the plane \boldsymbol{P}
$-\mathbf{L}$ is the coordinate vector of $\boldsymbol{l},(a, b, c)$ are its homogeneous coordinates

From Projective Plane to Euclidean Plane $\square \square \square \square \square \square \square \square ा$

- How do we "land" back from the projective world to the 2 D world of the plane? - For point, consider intersection of ray $\mathbf{x}=\left(\lambda x_{1}, \lambda x_{2}, \lambda x_{3}\right)$
with plane $x_{3}=1 \Rightarrow \lambda=1 / x_{3}, \quad \mathrm{~m}=\left(x_{1} / x_{3}, x_{2} / x_{3}\right)$
- For line, intersection of plane $a x_{1}+b x_{2}+c x_{3}=0$ with plane $x_{3}=1$ is line $l: a x_{1}+b x_{2}+c=0$

Projective Geometry

Ideal Points and Line at Infinity

- The points $\mathbf{x}=\left(\mathbf{x}_{1}, \mathbf{x}_{2}, 0\right)$ do not correspond to finite points in the plane. They are points at infinity, also called ideal points
- The line $\mathbf{L}=(0,0,1)$ passes through all points at infinity, since $\mathbf{L} \cdot \mathbf{x}=0$
- Two parallel lines $\mathbf{L}=(\boldsymbol{a}, \boldsymbol{b}, \boldsymbol{c})$ and $\mathbf{L}^{\prime}=\left(\boldsymbol{a}, \boldsymbol{b}, \boldsymbol{c}^{\prime}\right)$ intersect at the point $\quad \mathbf{x}=\mathbf{L} \times \mathbf{L}^{\prime}=\left(c^{\prime}-\boldsymbol{c}\right)(b,-a, 0)$, i.e. $(b,-a, 0)$
- Any line $(\boldsymbol{a}, \boldsymbol{b}, \boldsymbol{c}$) intersects the line at infinity at $(\boldsymbol{b},-\boldsymbol{a}, 0)$. So the line at infinity is the set of all points at infinity

Ideal Points and Line at Infinity

- With projective geometry, two lines always meet in a single point, and two points always lie on a single line.
- This is not true of Euclidean geometry, where parallel lines form a special case.
A mapping is a projectivity if and only if the mapping consists of a linear transformation of homogeneous coordinates $\mathbf{x}^{\prime}=\mathbf{H} \mathbf{x}$

$$
\text { with } \mathbf{H} \text { non singular }
$$

- Proof:
- If $\mathbf{x}_{1}, \mathbf{x}_{2}$, and \mathbf{x}_{3} are 3 points that lie on a line \mathbf{L}, and $\mathbf{x}_{1}=\mathbf{H} \mathbf{x}_{1}$, etc, then $\mathbf{x}_{1}, \mathbf{x}_{2}$, and $\mathbf{x}_{3}{ }_{3}$ lie on a line \mathbf{L}^{\prime}
$-\mathbf{L}^{\mathrm{T}} \mathbf{x}_{i}=0, \mathbf{L}^{\mathrm{T}} \mathbf{H}^{-1} \mathbf{H} \mathbf{x}_{i}=0$, so points $\mathbf{H} \mathbf{x}_{i}$ lie on line $H^{-T} L$
- Converse is hard to prove, namely if all collinear sets of points are mapped to collinear sets of points, then there is a single linear mapping between corresponding points in homogeneous coordinates

Projective Transformations in a Plane

- Projectivity
- Mapping from points in plane to points in plane
- 3 aligned points are mapped to 3 aligned points
- Also called
- Collineation
- Homography

Projectivity Matrix

$\left(\begin{array}{l}x_{1}^{\prime} \\ x_{2}^{\prime} \\ x_{3}^{\prime}\end{array}\right)=\left[\begin{array}{lll}h_{11} & h_{12} & h_{13} \\ h_{21} & h_{22} & h_{23} \\ h_{31} & h_{32} & h_{33}\end{array}\right]\left(\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right) \quad \mathbf{X}^{\prime}=\mathbf{H} \mathbf{x}$

- The matrix \mathbf{H} can be multiplied by an arbitrary non-zero number without altering the projective transformation
- Matrix H is called a "homogeneous matrix" (only ratios of terms are important)
- There are 8 independent ratios. It follows that projectivity has 8 degrees of freedom
- A projectivity is simply a linear transformation of the rays

Projective Geometry

- A point in a projective space $\boldsymbol{P}_{\mathrm{n}}$ is represented by a vector of $n+1$ coordinates $\mathbf{x}=\left(x_{1}, x_{2}, \cdots, x_{n+1}\right)$
- Add up one dimension, consider origin at distance 1 from line
- At least one coordinate is non zero
- Coordinates are called homogeneous or projective coordinates
- Vector \mathbf{x} is called a coordinate vector
- Represent \boldsymbol{m} as a ray from the origin $(0,0): \mathbf{x}=\left(x_{1}, x_{2}\right)$
- $X=(1,0)$ is point at infinity
- Points can be written $\mathrm{X}=(\boldsymbol{a}, \mathbf{1})$, where \boldsymbol{a} is abscissa along the line
- Two vectors $\mathbf{x}=\left(x_{1}, x_{2}, \cdots, x_{n+1}\right)$ and $\mathbf{y}=\left(y_{1}, y_{2}, \cdots, y_{n+1}\right)$ represent the same point if and only if there exists a scalar λ such that

$$
x_{i}=\lambda y_{i}
$$

The correspondence between points and coordinate vectors is not one to one

- A projective transformation of a line is represented by a 2×2 matrix

$$
\binom{x_{1}^{\prime}}{x_{2}^{\prime}}=\left[\begin{array}{ll}
h_{11} & h_{12} \\
h_{21} & h_{22}
\end{array}\right]\binom{x_{1}}{x_{2}} \quad \mathbf{x}^{\prime}=\mathbf{H} \mathbf{x}
$$

- Transformation has 3 degrees of freedom corresponding to the 4 elements of the matrix, minus one for overall scaling
- Projectivity matrix can be determined from 3 corresponding points

Projective Geometry in 1D

Cross-RatioInyariance in 1 D

- Cross-ratio of 4 points A, B, C, D on a line is defined as
$\operatorname{Cross}(A, B, C, D)=\frac{|A B|}{|A D|} \div \frac{|C B|}{|C D|}$ with $|A B|=\operatorname{det}\left[\begin{array}{ll}x_{A 1} & x_{B 1} \\ x_{A 2} & x_{B 2}\end{array}\right]$
- Cross-ratio is not dependent on which particular homogeneous representation of the points is selected: scales cancel between numerator and denominator. For $\mathrm{A}=(\mathrm{a}, 1), \mathrm{B}=(\mathrm{b}, 1)$, etc, we get

$$
\operatorname{Cross}(A, B, C, D)=\frac{a-b}{a-d} \div \frac{c-b}{c-d}
$$

- Cross-ratio is invariant under any projectivity

Cross-Ratio Invariance between Lines

- The cross-ratio between 4 lines forming a pencil is invariant when the point of intersection \boldsymbol{C} is moved
- It is equal to the cross-ratio of the 4 points

$\square \square \square \square \square \square \square \square \square ा$
If world and image points are represented by homogeneous vectors, central projection is a linear mapping between \boldsymbol{P}_{3} and \boldsymbol{P}_{2} :

$$
\begin{aligned}
& x_{i}=f \frac{x_{s}}{z_{s}} \\
& y_{i}=f \frac{y_{s}}{z_{s}}
\end{aligned}
$$

$$
\begin{gathered}
\left.\left[\begin{array}{c}
u \\
v \\
w
\end{array}\right]=\left[\begin{array}{llll}
f & 0 & 0 & 0 \\
0 & f & 0 & 0 \\
0 & 0 & 1 & 0
\end{array}\right] \begin{array}{c}
x_{s} \\
y_{s} \\
z_{s} \\
1
\end{array}\right] \quad x_{i}=u / w, y_{i}=v / w \\
\text { Image p/ane Scene point } \\
\left(x_{\mathrm{m}}-\mathrm{m}, z_{s}\right)
\end{gathered}
$$

Proiective Geometry

Projective Geometry

Projective Geometry in 3D

- Space P_{3} is called projective space
- A point in 3D space is defined by 4 numbers $\left(x_{1}, x_{2}, x_{3}, x_{4}\right)$
- A plane is also defined by 4 numbers $\left(\boldsymbol{u}_{1}, \boldsymbol{u}_{2}, \boldsymbol{u}_{3}, \boldsymbol{u}_{4}\right)$
- Equation of plane is $\sum^{4} u_{i} x_{i}=0$
- The plane at infinity is ${ }^{i}$ the plane $(0,0,0,1)$. Its equation is $\boldsymbol{x}_{4}=0$
- The points $\left(x_{1}, x_{2}, x_{3}, 0\right)$ belong to that plane in the direction $\left(x_{1}, x_{2}, x_{3}\right)$ of Euclidean space
- A line is defined as the set of points that are a linear combination of two points $\boldsymbol{P}_{\mathbf{1}}$ and $\boldsymbol{P}_{\mathbf{2}}$
- The cross-ratio of 4 planes is equal to the cross-ratio of the lines of intersection with a fifth plane

\square

