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Projective Geometry.

Euclidean versus Projective Geometry
N IO

m Euclidean geometry describes shapes “asthey are”

— Properties of objectsthat are unchanged by rigid
motions

» Lengths |:| i
» Angles 4 C ~
» Parallelism
m Projective geometry describes objects “ as they appear”
— Lengths, angles, parallelism become “distorted” when
welook at objects
— Mathematical model for how images of the 3D world
are formed.
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Tools of algebraic geometry

Informal description of projective geometry in aplane
Descriptions of lines and points

Points at infinity and line at infinity

m Projective transformations, projectivity matrix
Example of application

Special projectivities: affine transforms, similarities,
Euclidean transforms

m Cross-ratio invariance for points, lines, planes
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Tools of Algebraic Geometry 1
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»  Plane passing through origin and perpendicular to vector N = (&, b,c)
islocus of pointsX = (X, X,, X;) suchthat N -Xx=0

=> ax+bx +cx; =0
m  Planethrough origin is completely defined by(a,b, )
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= A vector parallel to intersection of 2 planes(a,b, ¢) and (&', b', ")
isobtained by cross product ,
i (a"b",c")=(ab,0)" (a'b',c’)
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Projective Geometr

e e el el SR

= Plane passing through two points xand x is defined by
(a,b,c) =x" x'
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(ab, t;)
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Projective Geometry in 2D
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m Weareinaplane P and want to describe lines and pointsinP

= Weconsider athird dimension to make things easier when dealing with infinity
— Origin O out of the plane, at adistance equal to 1 from plane

= To each point m of the plane P we can associateasingleray X = (X;, %, %)

m Toeachlinel of the plane Pwe can associate asingle plane (a, b, €)

Projective Geometry in 2D
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= Therays X = (X, %, %) adX=(I %,I %,| X;) aethesameand
are mapped to the same point m of the planeP
— Xisthe coordinate vector of m,(X,, X, , X, )areits homogeneous coordinates

m Theplanes (ElybY C) and(| albl C) are the same and are mapped to the
same linel of the plane P

— L isthe coordinate vector of |, (a,b, c) areitshomogeneous coordinates

:(a, ,C) 4 X (XI’XZ‘X3)

N,

\/ (a,b,c)
0
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XR
X = (X5 %50 %)
O s X
Properties
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= Point X belongstolineL if L .X=0
= Equation of line L in projective geometry is a X, +bX, + ¢ X, =0
= We obtain homogeneous equations

/ X= (X1, Xz, %)
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From Projective Plane to Euclidean Plane
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= How dowe*“land” back from the projective world to the 2D world of the plane?
— For point, consider intersectionof ray X = (I %,| %, X3)
withplane x, =1 =>| =1/X3, M=(Xy/ Xs, X2/ X3)
u Forline, mtersecnonof plane ax + b)(2 + CX,4 =0
withplane X; =1 islinel: ax +bx, +c= O

o x= (4. 5%)

m P

\/%,b,c)
o
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m TwolinesL =(a,b,g andL’'=(a,b',c’) intersect in the point
x=L L' ;
s Thelinethrough 2 pointsx andx’ is L =X~ X'
m  Dudlity principle: To any theorem of 2D projective geometry, thee corresponds a
dual theorem, which may be derived byfifterchanging the roles of points and lines
inthe original theorem X » —¥ e |

(a,b,¢)
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= The pointsx= (X, X,, 0) do not correspond to finite pointsin the
plane. They are pointsat infinity, also called ideal points
m ThelineL =(0,0,1) passesthrough all pointsat infinity, sinceL . x =0
= Twopardle lines L= (a b, c)andL’ =(a,b, ) intersect a the
point X=L L' =c-c)b,-a 0)ie (b-a0)
= Anyline(a, b, ¢ intersectstheline at infinity at (b,-a, 0). So theline

a infinity isthe set of all points at infinify
s
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Ideal Points and Line at Infinity
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m With projective geometry, two lines always meet
in asingle point, and two points awayslieon a
singleline.

m Thisisnot true of Euclidean geometry, where
parallel lines form a special case.

Projective Geometry.
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m A mappingisaprojectivity if and only if the mapping
consists of alinear transformation of homogeneous
coordinates X =

with H non singular
m Proof:

— If x4, X, andx are 3 pointsthat lieonalineL, and
X'1=H Xy, etc, thenX 1, X, andX ; lieonalinel’
—LTx=0,LTH "1H x =0, so pointsH x lieon line
HTL
m Converseishardto prove, namely if all collinear sets of
points are mapped to collinear sets of points, then thereisa
single linear mapping between corresponding pointsin
homogeneous coordinates

Projective Geometry

Projective Transformations in a Plane
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m Projectivity
— Mapping from pointsin plane to pointsin plane
— 3 aligned points are mapped to 3 aligned points
m Also called

— Collineation
— Homography D T Q
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Projectivity Matrix
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PO en ho hamd
(;X.zf:ghn he, hzmﬁxz_ X:HX

gx;,, gy M hsséxe;

m Thematrix H can be multiplied by an arbitrary non-zero number
without altering the projective transformation

m Matrix H is called a“homogeneous matrix” (only ratios of terms are
important)

m There are 8 independent ratios. It follows that projectivity has 8
degrees of freedom

m A projectivity issimply alinear transformation of therays
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= Central projection mapsplanar
scene pointsto image plane by a
projectivity
— True because dl pointson a
sceneline are mapped to points
onitsimageline

m  Theimage of the same planar scene
from asecond cameracan be
obtained from the image from the,
first camera by a projectivity

— True because
X =H X, X" =H" x;

sox", = H" H'1x",
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= Since matrix of projectivity has 8 degrees of freedom, the mapping
between 2 images can be computed if we have the coordinates of
4 points on one image, and know where they are mapped in the other
image
— Each point provides 2 independent equations
X_'1: fhx +h12y +hls = hl11X+hI12 y +h'13
X'S hlilX+ h32y+ h;a h'31X+ h‘32y+1

X=

':X_'zz hx+hy+h, - R x+h,y+h,
X3 hyxthpy+hy  hy x+hy,y+l

— Equations are linear in the 8 unknowns h' i :hij/ ha,
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Example of Application
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Robot going down the road
= Large squares painted on the road to make it easier
= Find road shape without perspective distortion from image

— Usecorners of squares: coordinates of 4 pointsallow usto
compute matrix H

— Then use matrix H to compute 3D road shape

=7
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Projective Space P,
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= A pointinaprojective space P, isrepresented by avector of n+1
coordinatesX = (X, X, , X,

= Atleast one coordinate is non zero.

m  Coordinates are called homogeneous or projective coordinates

= Vector x iscalled acoordinate vector

= Two vectorsX = (X, X, X)) ady =(Yy, Yooty Yior)
represent the same poi nt |f and or{ly if thereexistsascalar | such that

%=1y

The correspondence between points and coordinate vectorsis not one
to one.
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Special Projectivities
Invariants
P éhu hlz hx Colli -
Projectivi 8 inearity , I:l
JSdofty g e, Qzu Cross-ratios =<7
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Projective Geometry in 1D
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Pointsmalongaline

Add up one dimension, consider origin at distance 1 from line
Represent masaray fromtheorigin (0, 0): X =(X, X,)

X =(1,0) ispoint at infinity

Points can be written X = (a, 1), where aisabscissadong theline

- )(]7()(1')(22

x=(L0)
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= A projective transformation of alineisrepresented by a2x2 matrix

a('1 2 ,6111 llZ L‘:wi 2

E.p S hos

= Transformation has 3 degrees of freedom corresponding to the 4
elements of the matrix, minus one for overall scaling

= Projectivity matrix can be determined from 3 corresponding points

o . x=(1,0)

X'=Hx
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= Crossratioof 4 pointsA, B, C, D onalineisdefined as

EXx Xg U

Cross@,B,C,D)—-iA—g[ E[Wltqu detg "
&Xn 82U

= Cross-ratio is not dependent on which particular homogeneous
representation of the pointsis selected: scales cancel between
numerator and denominator. For A = (g, 1), B = (b, 1), etc, we get

a-b c-b
C B,C,D)=
ross@, )= 2 d'od
m Cross-ratio isinvariant under any projectivity X (%4, %)

o ~x=(10)
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Cross-Ratio Invariance in 1D
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m  For the4 setsof collinear pointsin the figure, the crossratio for
corresponding points has the same value
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Cross-Ratio Invariance between Lines
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L Thecross—ratiobaween4|inesformingapenci| isinvariant when

the point of intersection C ismoved
m |tisequal tothe crossratio of the 4 points

S~

C
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Projective Geometry in 3D
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= SpaceP; iscalled projective space
= A pointin 3D spaceis defined by 4 numbers(x,, X%, , X3, %;)
m A planeisaso defined by 4 numbers (u,, u,, us, u,)
Equation of planeis &
aux=0
= Theplaneat infinity isthe plane (0,0,0,1). Its equation isx,=0
= Thepoints (X,, %, X5, 0) belong to that planein the direction
(X1, %, X) of Euclidean space
= Alineisdefined asthe set of pointsthat are alinear
combination of two points P, and P,

= The crossratio of 4 planesisequal to the crossratio of the
lines of intersection with afifth plane
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Central Projection
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If world and image points are represented by homogeneous
vectors, central projection is alinear mapping between P, and P,:

x:fé éxu

7 éug éf 0 0 O '
s 808 1o o@:@ X =ulw, y, =viw
Bwg 60 0 1 O’y
y, = f£ v €0 %13 Image pjane Scene point
Z, ! (X0 Z)
Image po
center of (X, yit
projecth
z
) l:: N
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m Multiple View Geometry in Computer Vision, R. Hartley
and A. Zisserman, Cambridge University Press, 2000

m Three-Dimensional Computer Vision: A Geometric
Approach, O. Faugeras, MIT Press, 1996
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