
� From Code to Execution

The purpose of this division is to track how a program written in a high-level

programming language ends up running on a machine. We begin with a sur-

vey of the most important languages for scienti�c computing|Fortran 77,

Fortran 95, C, and C++. To become a running process, a code must be

compiled, assembled, and loaded, which is the subject of the second and

third sections of this division. A running process, however, must coordi-

nate a number of tasks implicit in the original code| for example, invoking

subprograms and managing memory allocation.

Before we start, it will pay to set the background and terminology that informs the

entire division. The following is a list of the stages by which a program in a high-level

language becomes an executing program. For purposes of illustration, we will use Unix

extension conventions.

High-level code with preprocessors statements. This is the starting point

for a program. It is organized in �les with extensions specifying the language;

e.g., .c or .f95. The �les are sent a preprocessor to produce

Pure high-level code. These preprocessed �les contain only code in the high-

level languages in question. They are passed to a compiler that produces

Assembly language code. We have discussed assembly language brie
y in x3.2.

Assembly language �les have the extension .s. An assembly language �le is

passed to an assembler to produce

Machine language code. This is code in machine language but with cross ref-

erences to other programs and library routines unresolved. Files containing

such code are called object �les and often have the extension .o. The several

object �les that compose a program are passed to a linker to produce

101

An executable program. This �le can have any name (on Unix systems the

default is usually a.out). On command the operating system will invoke a

loader to move the �le into virtual memory and will start its execution to

produce

A running process. During its execution, the process is supported by a run-

time environment, which, among other things, links the process dynamically

to shared libraries and aids in storage allocation and deallocation.

Of course, this list is a simpli�cation. For example, some languages do not have

preprocessors. Again, some compilers may jump directly to machine language code or

may produce code for a virtual machine whose execution is performed by a simulation

program for a particular machine. Finally, as we go down the list, the items become

increasingly dependent on the run-time environment|the collection of conventions

and routines that are particular to the machine and its operating system. In spite of

these exceptions, the list represents the typical passage from high-level code to a running

program.

6. Languages

In this section we are going to treat four high-level programming language that are

widely used in scienti�c computing: Fortran 77, Fortran 95, C, and C++. The purpose

of this treatment is not to make you a pro�cient programmer in each of these language|

that would be a long undertaking indeed. Instead it is intended to acquaint you with

the main features of the languages and their relevance to scienti�c computing. We will

begin with a discussion of the features more or less common to all four languages and

then turn to treatments of the individual languages.

A notable absence in this section is a treatment of I/O. All our languages have

excellent I/O constructs that can accommodate the needs of most scienti�c programs.

However, the price for this
exibility is a steep learning curve, one that we cannot climb

in this book. Fortunately, there are many excellent treatments of I/O in Fortran and

C.

6.1. Commonalities

Synopsis: The four programming languages we will study have many common features. Al-
though they di�er somewhat in format, programs written in them have a similar appearance.
They all work with typed variables such as integers, characters, and
oating-point numbers,
which can also be arranged in arrays. Variables can be combined in arithmetic and logical
expressions, and their values can be assigned to other variables. Flow through a program is
mediated by control constructs such as the if constructs and switches as well as constructs for
looping.

102

6.1. Commonalities 103

The languages allow separately compiled subprograms to perform specialized tasks. Information
is passed to subprograms through an argument list by either a call-by-value or a call-by-name
protocol. New, internal variables can be de�ned in a subprogram. Static internal variables
retain their values between subprogram invocations. Global variables can be accessed by all
subprograms. Except in Fortran 77, subprograms can invoke themselves recursively.

Again excepting Fortran 77, our languages provide the wherewithal to obtain extra memory on
demand|either from the stack or from the heap. They all have a preprocessor that can de�ne
constants and conditionally modify the program itself. They all come with standard libraries
to provide functionality not in the language itself| for example, to evaluate mathematical
functions.

|

It is customary to associate high-level programming languages with the Tower of

Babble and the discordant languages that God visited on a prideful humanity. And

indeed, the world of programming languages has been populated by a bewildering variety

of tongues, many of which are deservedly extinct. But the four languages of scienti�c

computing treated in this section|Fortran 77 Fortran 95, C and C++|have as much

in common as not. It will therefore simplify this section if we begin with a treatment of

their common aspects, in which we also discuss some of their di�erences. This will also

give us an opportunity to introduce in one place some of the concepts and nomenclature

from programming languages. For the sake of brevity the unquali�ed term `Fortran' will

mean both Fortran 77 and Fortran 95. The term `C family' will mean C and C++. We

will refer to the totality as `our languages'.

6.1.1. Format

Although programs written in our languages have strikingly di�erent appearances, they

all consist of sequences of characters divided into statements, which in turn consist

of lexical units|e.g., names, operators, and delimiters. In many instances simple

rules map the lexical units from one language to another, so that familiarity with one

makes it easy to read another. Unfortunately, ease of reading does not extend to active

programming.

A important di�erence between Fortran and C families is that Fortran uses line

endings to delimit statements while C uses explicit delimiters. In practice, however,

programmers tend to use standard indenting and line-breaking conventions, so that

programs in Fortran and the C family have a similar overall appearance.

Another di�erence is in the matter of reserved words. Programming languages

use two kinds of words. Keywords are words like if or return that are part of

the language itself. Identi�ers are words generated by the programmer as names for

variables, functions, �les, etc. In the C family keywords are reserved in the sense that

they cannot be used as identi�ers. In Fortran, on the contrary, there are no reserved

Draft November 18, 2005

104 6. Languages

words. Keywords are distinguished from identi�ers by context. However, the practical

di�erence between Fortran and the C family in this regard is not great. Using return

and other syntactically meaningful words as variable names is to invite confusion, and

good Fortran programmers seldom do it.

6.1.2. Data types and speci�cation statements

All our languages have the following data types: integer, single and double-precision

oating-point, logical (Fortran only), and character. The C family has a richer variety

of integers. Fortran supports
oating-point complex numbers, which the C family does

not.n The Fortran character type is really a string of characters in the sense of x2.2,

whereas in the C family it is an ordinary character. None of our languages commit

themselves to a particular character code.

The languages provide constants for all types. Their forms vary in minor ways from

language to language.

All types can be declared as arrays of various sizes and dimensions. However, array

usage is quite di�erent in Fortran and the C family, and we will treat them in detail in

the subsections for the individual languages.

In all but Fortran 77 it is possible to de�ne ensembles of types, called derived

types in Fortran 95 and structures in the C family. Instances of these ensembles can

be assigned to variables. Thus we might de�ne an ensemble point consisting of two

double precision numbers representing the x and y coordinates of a point in the plane.

We can then declare variables like A, B, or endpoint to be point's. We will treat these

ensembles in the subsections for the individual languages.

All but Fortran 77 provide pointers, that contain the addresses of other variables.

As we will see later, pointers are very powerful but also dangerous; and they can interfere

with the compiler optimization of a program.

All our languages have speci�cation statements or declarations that associate

a data type with a variable|a process called typing. A peculiarity of Fortran that a

variable that is not explicitly typed may be typed implicitly by the compiler. The use

of this feature is deprecated. Fortran 95 provides an elaborate mechanism to specify

the precision and other properties of its types.

6.1.3. Expressions

Expressions are build up of operators acting on constants and variables. All our lan-

guages support the arithmetic operations of addition, subtraction, multiplication,

and division. The operators are the usual ones (+, -, *, /). Fortran has an expo-

nentiation operator (**), and the C family has a modulus operator (%). The basic four

operators have the usual precedence with * and / evaluated before + and -. For ex-

G. W. Stewart Computer Science for Scienti�c Computing

6.1. Commonalities 105

ample, b+c*d evaluates as b+(c*d), not (b+c)*d. However, parentheses can be used to

override precedence. The basic four evaluate from left to right; e.g., a+b+c evaluates as

(a+b)+c.

When the operands of an operation are of di�erent type, the operand of a `lower'

type (e.g., integer) is converted to the operand of the `higher' type (e.g.,
oating-point)

before the operation is evaluated.

The four language provide relational operations. For example, in Fortran the

expression A.LT.B evaluates to .TRUE. if A is less than B and to .FALSE. otherwise. In

C the corresponding statement is a<b, which evaluates to 0 if a is less than b and to 1

otherwise. Note that the C family regards 0 as `false' and everything else as `true'.

Logical operations can be used to combine relational operations. For example in

Fortran A.LE.B. .AND. B.LT.C is .TRUE. if and only if A � B < C. The corresponding

C statement is a<=b && c<d.

All our languages provide operations and functions for manipulating characters and

strings.

In general the C family has a richer set of operations than Fortran. For example,

x++ increments x by one. Hence the name C++ for the object oriented extension of

C. Many of the operations of the C family| for example, shifting|are performed by

intrinsic functions in Fortran.

6.1.4. Assignment

An expression may be assigned to a variable, thus changing the value of the variable.

The basic assignment operator in all four languages is =, although the C family has

additional forms. When the type of the variable di�ers from the type of the expression,

the latter is converted to the type of the former. Conversion of a
oating-point number

to integer|say, i=x|always truncates the number. Note that this conversion results

in a loss of precision when x does not have an integer value. The converse assignment

x=i can also result is a loss of precision if i is too large.

6.1.5. Control constructs

Programs in our languages are executed one statement after another. This sequential

execution is insuÆcient for all but the simplest tasks because it does not allow for the

behavior of a program to depend on the values of its variables. Consequently, all our

languages have control constructs or control statements that allow the natural

order of execution to be overridden. The commonly occurring constructs are the if con-

struct, the select case (Fortran 95) or switch (C family) construct, the for (C family)

or do (Fortran) construct, the while (C family) or do while (Fortran 95) construct,

and the goto statement. In addition, invoking and returning from subprograms are also

Draft November 18, 2005

106 6. Languages

control operations. To avoid putting undue emphasis on any one of our languages, we

will use Matlab to illustrate these statements.

The if construct has the form

if <logical expression>

<statements>

elseif <logical expression>

<statements>

.

elseif <logical expression>

<statements>

else

<statements>

end

(6.1)

The construct executes the �rst <statements> for which their <logical expression>

evaluates to true. Otherwise the construct executes the <statements> following the

else. The elseif statements the may be omitted, as may be the else. In the latter

case, the construct does nothing if none of the <logical expression>'s evaluate to

true.

The switch construct has the form

switch <switch expression>

case <case expression>

<statements>

.

case <case expression>

<statements>

otherwise

<statemets>

end

(6.2)

The <statements> for the �rst case for which the <case expression> matches the

<switch expression> is executed. If there is no such case, the <statements> for the

otherwise are executed. The <case>'s may be omitted, as may be the otherwise.

The essence of a for or do construct is that a group of statements is executed for

a set of values of a variable. The ways by which the set is generated di�er in Fortran

and the C family, as they both do from Matlab. Here we will give a special case of the

Matlab construct that is close to the Fortran construct.

for <variable>=i:j:k

<statements>

end

Assuming that i � k and j > 0, the construct forms the vector

G. W. Stewart Computer Science for Scienti�c Computing

6.1. Commonalities 107

(i, i+j, i+2*j,, i+n*j),

where n is the smallest integer such that i + n�j � k. Then for each successive com-

ponent of the vector, <variable> is assigned that component and the <statements>

are executed. A break statement within the body of the for loop, terminates the loop.

A continue statement cause the loop to restart with the next value of <variable>. If

k � i and j<0, the loop runs backwards. Otherwise, the loop is not executed. If j is

not present, it is assumed to be 1.

For example, for i=10:-1:2 a(i) = a(i-1); end shifts the

1. for i=10:-1:2

2. a(i) = a(i-1)

3. end

the �rst nine components of the vector a upward by one.

The while construct has the form

while <logical expression>

<statements>

end

If the <logical expression> is true, then <statements> are executed (here, as in

C, true means nonzero). This process is continued until the <logical expression>

evaluates to false. As with the for construct, break exits the while loop while

continue restarts it.

For example, here is a little program to compute the rounding unit.

u = 1.0

while (u+1 ~= 1)

u = u/2;

end

u = 2*u

(Be warned, however, that some compilers, in a misguided attempt to improve or opti-

mize, may generate code that does not work.)

The goto statement represents an unconditional transfer of control from one part

of a program to another. Speci�cally, all our languages allow statements to be labeled.

The statement

goto <label>

transfers control to the statement whose label is <label>.

Ever since Edsger Dijkstra published his classic note \Go To Statement Considered

Harmful," [Comm. ACM, 11 (1968) 147{148] the goto statement has had bad press. It

is true that the undisciplined use of goto's has been responsible for much unreadable

Draft November 18, 2005

108 6. Languages

code, in which statements wrap around each other like so much spaghetti. It is further

true that as more sophisticated control statements were introduced into programming

languages, the need for goto's declined greatly. But the goto will not go away. There

are at least three situations in which it can be useful.

1. For simulating control statements that are not in the language at hand.

2. For breaking out of deeply nested constructs|especially loops.

3. For directing control from several places in a program to a common point| for

example, to a clean-up before quitting a section of code or a subprogram.

In cases like these a well commented goto can actually improve the legibility of a

program.

6.1.6. Subprograms

All our languages allow subprograms that can be compiled separately. A subprogram

is invoked by a program or another subprogram, it does its job, and it returns to the

statement just after its invocation. Information is conveyed to the subprogram in two

ways. First, by arguments in an argument list attached to the invoking statement.

Second, by means of global variables. Fortran has functions, which return a value that

can be used in an expression, and subroutines, which return values only through the

argument list. The C family has only functions.

As an example, consider the Matlab implementation of a stripped down version of

the BLAS dot.

1. function [d] = dot(n, x, y)

2. d = 0.0;

3. for i=1:n

4. d = d + x(i)*y(i);

5. end

6. n = 0; % This statement is for purposes of

% illustration only.

7. return

(6.3)

The variables n, x, and y are called dummy arguments (or parameters). As an

example of an invocation of this function consider the following script.

size = 5;

vec1 = ones(size, 1); vec2 = 2*vec1;

a = dot(size, vec1, vec2)

size

(6.4)

The entries size, vec1, and vec2 in the invoking argument list are called the actual

G. W. Stewart Computer Science for Scienti�c Computing

6.1. Commonalities 109

arguments. They are passed to the corresponding dummy arguments of dot, where

they are used to calculate the inner product.

Arguments can be passed in two ways: by value or by reference. In the C family (and

in Matlab) they are passed by value (a.k.a. call by value). This means that the actual

arguments are physically copied to temporary locations and the copies associated with

the corresponding dummy parameters. Any changes to the dummy parameters modi�es

only the copies, not the original. Thus, when (6.4) is executed, the result is

a =

10

size =

5

not size=0, as might be expected from line 6 in (6.3).

In Fortran (and as an option in C++) arguments are passed by reference (a.k.a.

call by reference). This means that the memory addresses of the actual parameters

are passed to the subprogram, where they are associated with the dummy arguments.

Any changes in the dummy arguments are re
ected in the actual arguments. Thus if

Matlab were to pass arguments by reference rather than by value, the output of (6.4)

would become
a =

10

size =

0

Each method of argument passing has its advantages and disadvantages. Call by

value is safe. Arguments are protected against inadvertent changes. But it takes time

and memory to copy extensive arguments, such as big arrays. Moreover, call by value

makes it impossible to return results via the argument list. We will see later how the C

family can use pointers to get around this limitation.

Call by reference avoids the disadvantages of call by value. But it can be dangerous.

In particular, modifying array argument in a subprogram can overwrite not only the

actual argument but also other variables in memory.

6.1.7. Internal and static variables

In addition to the variables that a subprogram obtains from via its argument list, a

subprogram can declare internal variables of its own to use during its execution. The

question arises of what happens when the subprogram returns to the invoking program.

In all our languages, the assumption is that internal variables become unde�ned unless

it is explicitly declared that their values are to be saved between invocations of the

subprogram. Such internal variables are said to be static. All our languages provide

mechanisms for declaring variables to be static.

Draft November 18, 2005

110 6. Languages

Static variables are in some sense the memory of a subprogram. Just as a child

fears �re only after it has been burnt, a subprogram with static variables may perform

di�erently on two invocations, even though the actual arguments are unchanged. This

is an example of a side e�ect. Side e�ects can be benign or even bene�cial. But they

make it diÆcult for a compiler to produce optimized code. In using static variables,

make sure you know what you are doing.

6.1.8. Global variables

In extensive programs it often happens that a subprogram needs access to a large num-

ber of variables| so large that passing them through a parameter list is unwieldy. This

problem can be resolved by introducing global variables that can be accessed from

within subprograms. All our language have mechanisms for implementing global vari-

ables. Needless to say, global variables are a rich source of side e�ects and should be

treated with respect.

6.1.9. Arrays

In scienti�c computing one frequently deals with vectors and matrices, which can be

regarded a linear and rectangular arrays of numbers. All our languages provide methods

for constructing arrays of various data types. For example, the Fortran 77 statement

double x(20), a(5,12)

de�nes x to be a linear array with 20 elements. The ith element is referenced by writing

x(i). Similarly, a is a two-dimensional array consisting of 5 rows and 12 columns. Its

(i,j)-element is a(i,j).

Unfortunately, the arrays of the Fortran family and the C family are quite di�erent

constructs. One of the main diÆculties in translating programs between the two families

is the treatment of arrays.

6.1.10. Structures and derived types

A point in the plane can be represented by two coordinates that are traditionally called

x and y. The fact that two variables are needed to specify a point complicates programs

that use them. Instead of keeping track of several sets of variables, it would be nice

to refer to them by individual variables| e.g., A, B, C that somehow contain the two

coordinates of the point in question.

Fortran 95 and the C family provide the wherewithal to do this. For example, in

Fortran 95 you can de�ne a derived type point by

G. W. Stewart Computer Science for Scienti�c Computing

6.1. Commonalities 111

type point

real x ! The x-coordinate

real y ! The y-coordinate

end type point

Then if we de�ne

type(point) A, B, C

We can refer to the x-coordinate of A by A%x. The corresponding construction in the C

family is called a structure.

6.1.11. Pointers

A pointer is a variable that contains an address of a memory location. Languages that

have pointers have a mechanism for retrieving and altering the memory locations they

point to. For example, if p is a C pointer then *p represents the object pointed to by p.

Pointers have many uses. To give just one example, consider the C statement

file = fopen(filename, mode)

which opens the �le designated by the character string filename. The value returned is

a pointer to a structure of type FILE that contains the properties of the �le. The use of

a pointer here is more eÆcient than returning a copy of the FILE structure. Moreover,

when it comes time to close the �le, the programmer can simply write

fclose(file)

and fclose not only closes the �le, but if required deletes any storage it has allocated

for file. file.

Pointers are useful and are therefore widely used. However, they are not without

their disadvantages. For one thing, they are potentially expensive. Consider, for exam-

ple, the following fragment of C code.

double a, *b

a = *b
(6.5)

To implement this, the pointer b must be loaded into a register, and then that register

must be used to address *b. For example, MIPS code might go as follows.

LD R3, b ; Get the pointer b

L.D F4, 0(R3) ; Use the pointer to get *b

S.D a, F4 ; Store the result in a

Draft November 18, 2005

112 6. Languages

Note that the store, which does not involve a pointer, requires only one memory ref-

erence, whereas it requires two memory references to load b. Thus the assignment

statement requires three memory reference as opposed to two for an assignment with-

out the pointer. Whether this extra work is important will depend on the context. For

example, if the assignment in (6.5) occurs in the middle of a loop, the pointer can be

loaded into a register before the beginning of the loop, so that the assignment requires

only two memory reference for each iteration of the loop. But in some applications,

especially those involving arrays of pointers, the overhead can be signi�cant.

Another problem is that in C pointers can be used to write to any location in virtual

memory. It the location is write protected, the result will be a fatal error. Finally,

pointers can make it diÆcult for compilers to optimize code, a topic treated in x7.1.4.

Pointers in Fortran 95 have restrictions on their usage that ameliorate these problems.

6.1.12. Recursion

A recursive subprogram is one that calls itself. For example, from the de�nition of

the factorial

n! = n(n� 1) � � � (2)(1); 0! = 1;

we have that n! = n(n � 1)!. This recursion suggests the following recursive Matlab

function to compute the factorial.

function fct = fact(n)

if n==0

fct = 1;

else

fct = n*fact(n-1);

end

return

(6.6)

Although it has its pitfalls, recursion is a valuable technique that can simplify programs.

It is not nearly as expensive as it is reputed to be. Of our languages, only Fortran 77

does not support recursion.

6.1.13. Memory management

When a variable or an array is declared, storage is set aside to contain it. However,

it may happen that in the course of execution the program requires more memory|

for example, a work array whose size depends on the input to the program. In most

systems, this extra storage comes from one of two places: the stack or the heap. When

we discuss the run-time environment at the end of this topic, we will see how the stack

and heap are implemented (see x8.2.3) and x??. For now, however, it is suÆcient to

G. W. Stewart Computer Science for Scienti�c Computing

6.1. Commonalities 113

know that getting memory from the stack is cheaper than getting it from the heap. But

memory is always available from the heap, whereas it is available from the stack only

in certain circumstances. Fortran 95, C, and C++ provide ways of using both sources.

Fortran 77, on the other hand, can access neither: all storage must be allocated before

the program starts executing.

6.1.14. Preprocessors

A preprocessor is a program that takes high-level language code and changes it ac-

cording to preprocessor directives before it is compiled. All our languages have

preprocessors, which are descendents of the C preprocessor and hence are very much

alike. For example, in all of them a directive starts with #.

An important use of the preprocessor is to include text from external �les. For

example, in C the preprocessor line

#include <stdio.h> (6.7)

brings in a system �le containing speci�cation statements that are used in I/O.

Another use is to de�ne constants. For example

#define PI 3.14159265 (6.8)

cause the occurrence of the name PI in the text of the program to be replaced by

3.14159265. More elaborate de�nitions, called macros, can take arguments.

Although we will give no detailed treatment of preprocessors, we will describe speci�c

uses wherever appropriate.

6.1.15. Separate compilation

Large programs|or even smaller ones|are usually divided into several source �les.

There are two reasons. First, managing a very large source �le is an error-prone proce-

dure. In fact, just �nding something in a large �le is not easy. Second, as a program is

developed, parts of it become debugged and not subject to change. To recompile these

parts whenever another part changes is wasteful in resources. For these reasons our

languages all allow separate compilation of �les. The results are then linked together

into a single executable �le, which is loaded onto the machine.

The parts on one �le may need to know about what is in the other �les. For example,

if all �les share global variables, the variables must be speci�ed in each. Again, languages

like C that automatically convert arguments to subprograms need to know the types

of the arguments, even if the subprogram is in a di�erent �le. Each language meets

these requirements in di�erent ways. For now it suÆces to say that Fortran 77 has only

primitive facilities, C is versatile but messy, and Fortran 95 is versatile and elegant.

Draft November 18, 2005

114 6. Languages

6.1.16. Libraries

To keep a programming language of manageable size the number of operators must be

restricted. Functionality not provided by the language itself is provided by subprograms.

In principle, one could place the responsibility for designing and coding such subpro-

grams on the user community. In practice, however, some functions are so intimately

connected with the language that the language must specify them to insure uniformity.

These are the library functions of the language.

In Fortran, the members of the library are called intrinsic functions. C and Cpp

have standard libraries. In what follows we will not treat these libraries in detail.

But we will use library routines freely in our examples.

|

This completes the general treatment of our languages. The next four subsections

will treat the individual languages: Fortran 77, Fortran 95, C, and C++.

6.2. Fortran 77

Synopsis: Fortran 77 is the descendent of the oldest living programming language. In spite of
its successor, Fortran 95, it is still an important language.

Fortran 77 statements are delimited by lines with �xed �elds. Fortran 77 variables consist of
up to six alphanumeric characters beginning with an alphabetic character. The short variable
names often make Fortran 77 programs diÆcult to read.

Fortran 77 supports the following types: integer, single and double precision
oating-point,
complex single-precision
oating-point, logical, and character. The character type is what one
usually calls a string. In addition to explicit typing, Fortran 77 supports implicit typing by the
�rst letter in a variable name.

Fortran 77 has a full complement of arithmetic and relational operators. It has a full if construct
and a do loop construct. It does not have while loop or switch constructs.

The subprograms of Fortran 77 are subroutines and functions. Parameters are passed by refer-
ence. Subroutines return values through their calling sequence while functions return a scalar
value. The latter can also return values through their calling sequences, though this may lead to
undesirable side e�ects. Internal variables may be declared static. Global variables are provided
by common blocks. Fortran 77 does not support recursion.

Fortran 77 arrays are stored in column-major order. When they are passed to subprograms,
all dimensions but their last must also be passed to insure proper indexing. However, the
declaration of an array in a subprogram need not be the same as that in the calling program,
even the number of dimensions may vary. This, in e�ect, makes it to pass columns of matrices
to subprograms.

|

Although Fortran (FORmula TRANslator) may not be the �rst high-level program-

ming language, it is certainly the �rst successful one. It was developed at IBM by a

G. W. Stewart Computer Science for Scienti�c Computing

6.2. Fortran 77 115

team headed by John Backus and released in 1954, which makes it over a half century

old. It owes its long life to the fact that it has been repeatedly extended. Fortran II,

Fortran IV, Fortran 66, Fortran 77, and Fortran 90/95 (here Fortran 95 for brevity) form

the sequence of loosely backward compatible languages that have dominated scienti�c

computing for decades (although C and C++ have been enroaching on the territory).

Fortran 2003, which has just been released, is a major extension of Fortran, containing,

among other things, support for object oriented programming.

As of this writing, the living variants of Fortran are Fortran 77 and Fortran 95.

There is a large gap between the two. Fortran 77, which was released in 1980, is the

last of a line of what might be called fundamental Fortran. Fortran 95 is in many

respects a di�erent language, although it manages to include Fortran 77. Still, there

are two good reasons for being conversant with Fortran 77. First, Fortran 95 has never

completely caught on, and people still write programs in Fortran 77. Second, because

of the backward compatibility of Fortran 77 with Fortran 95, little of the vast legacy of

Fortran 77 programs has been translated into Fortran 95| for example, the widely used

LAPACK matrix package is coded entirely in Fortran 77. Hence a reading knowledge

of Fortran 77 is essential to the scienti�c programmer.

In preparing this subsection I have relied heavily on the truly excellent Professional

Programmer's Guide to Fortran77 by Clive G. Page. Although, it is out of print, the

entire text is available on the web.

Figure 6.1 contains code adapted from the reference BLAS function ddot, which

computes the dot product (author, Jack Dongarra). We will use it to illustrate the

features of Fortran 77.

6.2.1. Format

Unlike most programming languages, Fortran 77 is line oriented with distinct �elds in

each line. Here is a list of the �elds and their uses along with illustrative lines in ddot.

cols use lines

1 comment 2, 3

2{5 label 26, 32

6 continuation 19, 21

7-72 statements 18, 22, 33

From this we see that statements are con�ned to columns 7{72. If a statement must be

continued to another line, it is done by placing a character in column 6. A C or * in

column 1 indicates the beginning of a comment. Finally, columns 2{5 are reserved for

labels, which must be numeric.

The character set for Fortran 77 consists of the uppercase alphabetical characters,

the digits from zero to nine, and a number of special characters like +, (, and =. A

Draft November 18, 2005

116 6. Languages

1. double precision function ddot(n,dx,incx,dy,incy)

2. c

3. c forms the dot product of two vectors.

4. c

5. double precision dx(*),dy(*),dtemp

6. integer i,incx,incy,ix,iy,m,mp1,n

7. c

8. ddot = 0.0d0

9. dtemp = 0.0d0

10. if(n.le.0)return

11. if(incx.eq.1. and. incy.eq.1) go to 20

12. c

13. c code for unequal increments or equal increments

14. c not equal to 1

15. c

16. ix = 1

17. iy = 1

18. if(incx.lt.0)

19. * ix = (-n+1)*incx + 1

20. if(incy.lt.0)

21. * iy = (-n+1)*incy + 1

22. do 10 i = 1,n

23. dtemp = dtemp + dx(ix)*dy(iy)

24. ix = ix + incx

25. iy = iy + incy

26. 10 continue

27. ddot = dtemp

28. return

29. c

30. c code for both increments equal to 1

31. c

32. 20 do 30 i=1,n

33. dtemp = dtemp + dx(i)*dy(i)

34. 30 continue

35. ddot = dtemp

36. return

37. end

Figure 6.1: Fortran 77 implementation of the BLAS routine ddot.

G. W. Stewart Computer Science for Scienti�c Computing

6.2. Fortran 77 117

symbolic name consists of not more that six alphanumeric characters, the �rst of which

must be alphabetical. The restriction to six characters makes it diÆcult to generate

meaningful names for variables, and the nomenclature in Fortran 77 programs tends to

be terse and cryptic|e.g., INTGRL for INTEGRAL.

Although lowercase letters are not part of the standard, all compilers accept them,

and programmers often use them because they are easier to read. However, Fortran 77

is not case sensitive. The symbolic names FARB, farb, and FaRb are all the same to the

compiler. For readability, all examples in this subsection will be in lower case.

6.2.2. Data types

In x2 we described the data types that computers commonly manipulate. High level

programming languages have conventions for associating variables or identi�ers with

data types. We will now treat the conventions of Fortran 77

A variable is a symbolic name that is associated with a data type. The following

table lists the types along with representative examples of their constants.

integer 350, -25

real 3.0, -2.5, 4.789e+2 (= 478.9)

double precision 3.0d0, -2.5d0, 4.789d+2

complex (5.4, 6.e2)

logical .true., .false.

character 'j', 'Stewart'

Note particularly the `scienti�c notation' for real and double precision constants (it is

obligatory for double precision constants). The character type is really a string; that is,

an array of characters as described in x2.2.

The types of variables can be declared by speci�cation statement; e.g.,

double precision dx(*),dy(*),dtemp

from line 6 of ddot. The size of the type integer is system dependent, but it is typically

four or eight bytes. Nowadays the types real and double precision invariable mean single

and double precision IEEE
oating-point numbers. Fortran 77 has a complex type, but

no double precision complex type (however, the speci�cation double complex is widely

available as an extension.) Logical variables are used in if statements.

If an object is not typed by a speci�cation statement, Fortran 77 will give it an

implicit type. Speci�cally, if a variable begins with i, j, k, l, m, or n it of type

integer. Otherwise it is of type real. As a matter of good programming practice, all

variables should be typed explicitly.

Draft November 18, 2005

118 6. Languages

6.2.3. Expressions and assignment

The arithmetic operators in Fortran 77 are + (addition), - (subtraction), * (multiplica-

tion), / (division), and ** (exponentiation). The relational operators are .lt. (<), .le.

(�), .eq. (=), .ge. (�), .gt. (>), and .ne. (6=). The logical operations are .and.,

.or., .eqv. (logical equivalence), .neqv. (nonequivalence aka exclusive or) and .not.

(negation). The binding of the operators follows the natural mathematical conventions.

Operands in mixed expressions are promoted in a natural way.

Fortran 77 provides a number of intrinsic functions to complement its operators.

Of particular importance are functions like SIN, COS, etc. These functions are poly-

morphic in the sense that their behavior depends on the type of their argument. For

example, if x is typed real, double, or complex, then sin(x) returns a real, double, or

complex value.

Fortran 77 has primitive operations to extract substrings and concatenate strings.

Other operations on strings are performed by intrinsic functions.

The assignment operator is =, as in

z = sqrt(x**2 + y**2)

In mixed assignments the right-hand value is converted to the type of the left-hand

variable, with a possible loss of precision.

6.2.4. Control constructs

Fortran 77 has two forms of the if construct. The if statement has the form

if (<logical expression>) <statement>

If <logical expression> evaluates to .TRUE. then <statement> is executed; other-

wise, not.

The block if construct di�ers only in minor syntactical details Matlab version (6.1).

The chief looping construct is the do construct. The following is a typical illustration

do 100 i = 1,10,2

<statements>

100 continue

(6.9)

The variable i is called the loop index. The loop is executed for i=1,3,5,\ldots,9.

Loops can run backward. For example

do 100 i = 10,1,-3

executes its body for 2=10,7,4,1. If the increment/decrement [i.e., 2 in (6.9)] is missing

it is assumed to be one. Inconsistent loops are not executed. For example, a loop

beginning

G. W. Stewart Computer Science for Scienti�c Computing

6.2. Fortran 77 119

do 100 i = 10,1

falls through its own body doing nothing.8

The loop index may not be rede�ned in the body of the loop. When the loop termi-

nates|whether naturally or by using a goto to exit the loop|the value of the loop

index is well de�ned, though the rules are a little complicated. Arithmetic expressions

are permitted on the left of the equality sign; however, such expressions are evaluated

only once just before the start of the loop. Floating-point expressions are permitted, as

in

do 100 x = 0.0, 1.0, 0.1

However, the use of
oating point in do constructions is deprecated because rounding

error may cause them to behave unpredictably. A better way to write the above loop

is

h = 1.0/n

do 100, I=0,n

x = i*h

.

In addition Fortran 77 has a return statement to exit subprograms and a stop state-

ment to terminate execution. Unfortunately, Fortran 77 does not have the equivalent

of a switch or case construct. Nor does it have a while construct.

6.2.5. Program organization and subprograms

Like all our programming languages, Fortran 77 allows programs to be subdivided into

programming units. The three main units are the program, the function, and the

subroutine. Each program must have a single program unit, which has the form

program <name>

<specification statements>

<executable statements>

end

When the program begins execution, it will start with the �rst executable statement in

the program <name>. Note that in a program (as well as in a function or subroutine)

speci�cation statements must precede executable statements.

The subprogram ddot in Figure 6.1 is a typical function. The header
8There is a cautionary tale here. The original Fortran do construct tested for termination at the end

of the loop because that was convenient for the IBM 704|the target machine for Fortran. The result

was that an inconsistent loop would always be executed once. This `feature' was widely used, even after

the standard for Fortran 66 decreed that the result of inconsistency was unde�ned. The community of

macho programmers, however, refused to take the hint, and, when the Fortran 77 standard declared

that inconsistent loops were not to be executed, their howls of anguish and rage could be heard far and

wide.

Draft November 18, 2005

120 6. Languages

double precision function ddot(n,dx,incx,dy,incy)

speci�es the type of the returned value ddot. The dummy variables in the argument

have their types speci�ed in the next to statements.

Arguments are passed to functions and subroutines by reference, and hence a func-

tion can change the values of the actual parameters used when it is invoked. However,

this practice is deprecated because of the possibility of side e�ects. Consider for example

the two functions fu and bar de�ned as follows.

integer function fu(m) integer function bar(m)

integer m integer m

fu = 5 bar = m

m = 10 end

end

When these functions are used in the sequence

m = 1

if (fu(m) .gt. bar(m)) ...

the result will depend on which order fu and bar are evaluated. If fu �rst, the relational

expression in the if statement will evaluate to .true. If bar is evaluated �rst, the

expression will evaluate to .false.. The Fortran 77 standard is of no help here: it does

not specify an order for the evaluation fu and bar.

Subroutines can only return values through the argument list. Here is a short

subroutine implementing a limited version of AXPY.

subroutine daxpy(n, a, x, y)

integer n

double precision a, x(*), y(*)

do 10 i=1,n

y(i) = y(i) + a*x(i)

10 continue

end

Note that we cannot convert daxpy to a function, since functions can return only scalars,

not arrays. A subroutine is invoked by a call statement: e.g.,

call daxpy(20, 3.0d0, u, v)

There is a return statement that transfers control back to the invoking procedure.

Alternatively, a subprogram will return when it runs into its end statement. A save

speci�cation allows variables to retain their values between a return and the next invo-

cation.

Fortran 77 allows subprograms to be passed to a function or subroutine through the

parameter list. This feature can be used to write utility routines that operate on various

functions. For example, a function

G. W. Stewart Computer Science for Scienti�c Computing

6.2. Fortran 77 121

double precision function intgrl(a, b, func)

double precision a, b, func

that computes an approximation to the integral of func from a to b, might be invoked

as follows

intrinsic sin

external myfunc

double precision iab1, iab2

iab1 = intgrl(0, 10, sin)

iab2 = intgrl(0, 10, myfunc)

This would cause iab1 to be set to an approximation to
R
10

0
sin(x) dx and iab2 to be set

to an approximation to
R
10

0
myfunc(x) dx. If an intrinsic function is used in a parameter

list, must be declared intrinsic in the invoking program. All other subprograms so

used must be declared external. Further typing is unnecessary, since the invoked

subprogram types its own parameters.

An important alternative to communicating through the argument list is to use

global variables. Named blocks of global variables can be created using common

blocks. An example of such a block is

common /myblk/ a(100), b(10), c, num

double precision a, b, c

integer num

save /myblk/

Any subprogram containing these declarations has access to the global variables a, b,

c, and num. The save declaration insures that values of the variables of the block are

saved on return from a subprogram. Common blocks are initialized via the block data

construct.

Fortran 77 does not support recursive subprograms.

6.2.6. Arrays and subprograms

Fortran allows its types to be declared as arrays with up to seven dimensions. For

example, consider the following speci�cation statements.

integer n(1000)

real b(100), b(-5:5), c(25,30)

The �rst statement declares n to be 1-dimensional array of 1000 integers. Its elements

are referenced as c(1),. . . ,c(1000). In the second statement a is a 1-dimensional array

of 100 reals. The variable b is a 1-dimensional array of 11 reals that are referenced as

b(-5), b(-4), . . . , b(4), b(5). The variable c is a 2-dimensional array of reals whose

indexing begins with c(1,1).

Draft November 18, 2005

122 6. Languages

a a + 40 a + 80 a + 120

A(1,1) A(1,2) A(1,3) A(1,4)

a + 8 a + 48 a + 88 a + 128

A(2,1) A(2,2) A(2,3) A(2,4)

a + 16 a + 56 a + 96 a + 136

A(3,1) A(3,2) A(3,3) A(3,4)

a + 24 a + 64 a + 104 a + 144

A(4,1) A(4,2) A(4,3) A(4,4)

a + 32 a + 72 a + 112 a + 152

A(5,1) A(5,2) A(5,3) A(5,4)

Figure 6.2: Column-major storage of an array.

The elements of multidimensional arrays are stored consecutively in memory with

the �rst index varying most rapidly and the last least rapidly. For example, if c is

de�ned by

double precision c(2,2,2)

then the order of the elements of c in memory are

c(1,1,1), c(2,1,1), c(1,2,1), c(2,2,1),

c(1,1,2), c(2,1,2), c(1,2,2), c(2,2,2)

Figure 6.2 shows how the elements of an a 5�4 array A of doubles is stored, assuming

that the starting address of the array is a. A formula for the position of A(i,j) in

memory is

a + 8*(5*(j-1) + i-1).

The 8 in this formula is the length of of a double-precision word. The 5 is equal to the

size of the �rst dimension of A, and that is no coincidence. In general, if A m�n, then

the position of A(i,j) in memory is

a + size*(m*(j-1) + i-1). (6.10)

The dimension m, which is called the leading dimension of A is critical to locating the

elements of A in memory. Surprisingly, perhaps, the trailing dimension plays no role in

determining where elements are stored.

To illustrate the interactions of subprograms and arrays, we will use the following

code as a running example.

G. W. Stewart Computer Science for Scienti�c Computing

6.2. Fortran 77 123

integer m, n, mmax, nmax

parameter (mmax=100, nmax=50)

data m/75/, n/25/

double precision a(nmax), b(nmax), c(mmax,nmax), d(mmax,nmax)

call fu(m, n, mmax, nnax, a, b(3), c, d(1,5))

(6.11)

The parameter speci�cation de�nes and initializes two named constants, mm and nn,

which are in turn used to specify the dimensions of a and b. The data speci�cation is

the standard way of initializing ordinary variables.

The call to fu illustrates a common practice in scienti�c computing. In the course of

a computation the size of an object may change. For example, a in (6.11) may represent

a vector whose size n changes, and b may represent a matrix whose row and column

dimensions m and n also change. Since Fortran 77 cannot change storage allocation at

execution time, it is customary to determine a maximum problem size| in this example

de�ned by mmax and nmax|and make all relevant arrays large enough to contain the

problem.

The calling sequence shows that there are two ways to pass an array|pass the entire

array or pass an element of the array. The �rst is uncomplicated. Since Fortran 77 passes

actual arguments by reference, the address of the �rst element in the array is passed to

the subroutine. The second is open to two interpretations. In our example, b(3) could

be regarded as an expression that evaluates to the value of the third element of b. In

that case, the value of b(3) would be stored in a temporary location in memory and the

address of that location would be passed. Fortran 77 does not do this. Instead it passes

the address of the third element of b. This convention has important implication, as we

shall see in a moment.

The declarations in fu can vary. Here is the most conservative option

subroutine fu(m, n, ldc, nmax, aa, bb, cc, dd)

integer m, n, ldb, nn

double precision aa(nmax), bb, cc(ldc, nmax), dd

In this case aa and cc are declared as arrays of the same size as their actual arguments

a and c. The dimensions for this construction must be passed through the calling

sequence of the subprogram. Such subprogram arrays are called adjustable arrays.

An advantage of adjustable arrays is that the compiler, knowing their dimension, can

generate code to check to see if an array reference is out of range.

We have renamed mmax as ldc, which stands for the leading dimension of c. This

nomenclature is widely used in scienti�c computing. It follows from (6.10) that the

leading dimension is absolutely necessary for the subroutine to compute array references,

like cc(i,j) properly.

The dummy arguments bb and dd corresponding to b(3) and d(1,5) are declared

as scalars. Modifying them will cause the b(3) and d(1,5) to be modi�ed, but the

arrays will be otherwise unaltered.

Draft November 18, 2005

124 6. Languages

Another variant in the declarations in fu is based on the fact that the the value

of nn is not needed to make array references. This leads to the following speci�cation

statements.

subroutine fu(m, n, ldc, nmax, aa, bb, cc, dd)

integer m, n, ldb, nn

double precision aa(*), bb, cc(ldc,*), dd

The arrays aa and cc are called assumed-size arrays. Range checking cannot be

performed on assumed-size arrays; nor can they be used in any construct where the size

of the arrays must be known. But the value of nn does not have to be passed in the

argument list. Note that we still have to pass mmax (a.k.a. ldc) to recover entries in the

array cc.

A further level of subtlety is illustrated by the following code.

subroutine fu(m, n, ldc, nmax, aa, bb, cc, dd)

integer m, n, ldc, nn

double precision aa(*), bb(*), cc(ldc,*), dd(ldc,*)

Now bb has become a 1-dimensional array beginning at the address of b(3) in the

calling program. Thus a reference to bb(i) in the subroutine corresponds to a refer-

ence to b(3+(i-1)). Equivalently, bb(1:n-3+1) corresponds to b(3:n). Analogously,

dd(1:m,1:n-5+1) corresponds to d(1:m,5:n). As above, ldc is still necessary to in-

sure proper indexing. In this manner, Fortran 77 allows subarrays to be passed to

subprograms.

Here is the bottom line.

subroutine fu(m, n, ldc, nmax, aa, bb, cc, dd)

integer m, n, ldb, nn

double precision aa(*), bb(*), cc(ldc,*), dd(*)

The change is in the declaration of dd, which has become a linear array, whose starting

address is that of d(1,5). In other words dd(1:m) is simply the �fth column of dd.

The treatment of dd in the last two examples is what makes the basic linear algebra

subprograms (BLAS) work (see x4.3.3), since it enables one to pass submatrices to them.

For a nontrivial example, suppose we want to compute B = ATA, where A is an m�n

matrix. Partitioning A = (a1 a2 � � � an) by columns, we have

B = ATA =

0
BBB@

aT
1

aT
2

...

aT
n

1
CCCA (a1 a2 � � � an) =

0
BBB@

aT
1
a1 aT

1
a2 � � � a

T
1
an

aT
2
a1 aT

2
a2 � � � a

T
2
an

...
...

...

aT
n
a1 aT

2
a2 � � � a

T
n
an

1
CCCA

Thus the (i; j) element of B is just the dot product of the ith and jth columns of A. If

we use ddot (Figure 6.1), we get the following code.

G. W. Stewart Computer Science for Scienti�c Computing

6.3. C 125

do 20 j=1,n

do 10 i=1,j

b(i,j) = ddot(m, a(1,i), 1, a(1,j), 1)

b(j,i) = b(i,j)

10 continue

20 continue

(6.12)

This is simplicity itself. Note that we do not need a leading dimension for a, since we

are traversing columns of a in ddot, which in Fortran 77 implies a stride of one. Things

would be rather di�erent if we were computing AAT; see Exercise ??.

Passing the address of an element of an array has an admittedly ad-hoc
avor.

However, as we have seen, it can be useful in manipulating subarrays, and it is quite

safe when it is used with well-tested subprograms like the BLAS. The alternative is to

pass the array, its leading dimension, and the four boundaries of the subarray, which is

error prone and does not result in code that is easy to read. For example, the calling

sequence of ddot in (6.12) would have to become something like

ddot(a, 1, m, i, i, 1, a, 1, m, j, j, 1)

The code for ddot also becomes more elaborate.

6.3. C

Synopsis: C is a language developed in the early 1970's that is oriented primarily toward
systems programming. Nonetheless it is used in scienti�c computing, and is especially useful
where the manipulation of data structures is as important as number crunching.

C is a free-format language with explicitly delimited statements. Simple statements end with a
semicolon. Statements can be grouped together into a compound statement or a block.

C supports the following types: integer, single and double precision
oating-point, and charac-
ters. C has no complex type, a serious omission. C also has no logical type, but for any type
nonzero represents true and zero represents false. Strings are arrays of characters terminated
by a delimiter. C has no implicit typing.

Variables may be declared within blocks. Storage for these automatic variables is allocated on
the stack, and they go away when the block is exited unless they have been declared static.

C is very rich in operators It has the usual arithmetic (save exponentiation) and relational
operations, and in addition binary operations. It has a variety of increment, decrement, and
assignment operators. Operations on strings are performed by the standard library.

C has if and switch constructs as well as while and for loops.

The only subprogram type in C is the function. Parameters are passed by value, but passing by
value can be simulated by using pointer. C supports recursive functions. Every program must
start with a function called main.

The unit of compilation of C is the �le. In addition to functions, �les can contain variables
local to the �le and global variables. The rules for how �les communicate with one another are

Draft November 18, 2005

126 6. Languages

complicated. Some of the complexity can be reduced by the use of header �les.

C supports pointers, which are essentially addresses of variables. It has operators for to refer-
ence variables through pointers and to initialize pointers to the address of a variable. Pointer
arithmetic allows one to use a pointer to move about in memory.

C arrays are intimately related to pointers, and array references can be replaced by pointer
arithmetic. A major failing of C is that it is impossible to pass a two-dimensional array to a
function unless the function knows at compile time the trailing dimension of the array.

Structures combine variables (and other structures) into one object. They can be used to
implement data structures, such as linked lists and queues. The use of structures is illustrated
by the compressed representation of a sparse vector.

|

C was developed in the early 1970's at Bell Laboratories by Dennis Richie. For back-

ground I can do no better than to quote the summary of Richie's excellent Development

of the C Language.

Ken Thompson created the B language in 1969-70; it was derived directly

from Martin Richards's BCPL. Dennis Ritchie turned B into C during 1971-

73, keeping most of B's syntax while adding types and many other changes,

and writing the �rst compiler. Ritchie, Alan Snyder, Steven C. Johnson,

Michael Lesk, and Thompson contributed language ideas during 1972-1977,

and Johnson's portable compiler remains widely used. During this period,

the collection of library routines grew considerably, thanks to these peo-

ple and many others at Bell Laboratories. In 1978, Brian Kernighan and

Ritchie wrote the book that became the language de�nition for several years.

Beginning in 1983, the ANSI X3J11 committee standardized the language.

C was designed to code the unix operating system. As such, it is oriented to systems

programming and is not as well suited as Fortran for numerical work. Nonetheless, it is a

more supple language than Fortran and a lot more fun to write code in. Consequently, C

and its object oriented successor C++ are widely used in scienti�c computing, especially

in situations where the manipulation of data structures is as important as
oating-point

arithmetic.

C is not a subset of C++; but with minor precautions, a C++ compiler will work

with C programs. Since its initial standardization, C has been extended to C99, a new

standard. C99 removes many of the infelicities of C. From the standpoint of scien-

ti�c computing, the most important is the introduction of variable array dimensions.

Unfortunately these very improvements make C strongly incompatible with the C++

standard. The crystal ball is cloudy, but one scenario is that C++ will extend itself

along the lines of C99.

Figure 6.3 contains a C implementation of ddot. We will use it in as a running

example in what follows.

G. W. Stewart Computer Science for Scienti�c Computing

6.3. C 127

1. double ddot(int n, double x[], int incx, double y[], int incy){

2.
3. /* Form the dot product of two vectors. */

4.
5. double dot;

6. int i, ix, iy;

7.
8. dot = 0.0;

9. if (n <= 0) return 0;

10. if (incx!=1 || incy!=1){

11.
12. /* Code for unequal increments or equal increments

13. not equal to 1. */
14.
15. ix = (incx <0) ? (1-n)*incx : 0;

16. iy = (incy <0) ? (1-n)*incy : 0;

17. for (i=0; i<n; i++){

18. dot += x[ix]*y[iy];

19. ix += incx;

20. iy += incy;

21. }

22. }

23. else{

24.
25. /* Code for both increments equal to 1. */

26.
27. for (i=0; i<n; i++)

28. dot += x[i]*y[i];

29. }

30. return dot;

31. }

Figure 6.3: C implementation of the BLAS routine ddot.

Draft November 18, 2005

128 6. Languages

6.3.1. Format

Although ddot is broken up into lines for purposes of legibility, C treats the end of a

line as whitespace, which also includes blanks, horizontal and vertical tabs, new lines,

and form feeds. Thus we could write the two declarations beginning at line 5 as

double dot; int i, ix

, iy;

On the other hand, white space is signi�cant in separating identi�ers and keywords.

Thus we cannot code

inti, ix, iy;

An identi�er in C consists of any number of alphanumeric characters and under-

scores. The �rst character must be a letter or an underscore. C is case sensitive; e.g.,

the identi�ers tom and Tom are di�erent. C has 32 keywords that may not be used

as identi�ers. In Figure 6.3 the keywords in order of appearance are double, int, if,

return, for, and else.

C is divided into statements. Simple statements end with a semicolon; e.g.,

dot = dot + x[ix]*y[iy];

Groups of simple statements may be grouped by curly braces into a compound state-

ment or block. The three statements starting on line 18 in ddot form a block.

Comments are delimited by /* and */, as in lines 12 and 13 of ddot. C++ and

many C compilers permit // start a comment that ends with the line. This convention

is especially e�ective for making short running comments about the code, as in

for (i=0; i<10; i++){ // Initialize x and y

x[i] = i;

y[i] = 1;

}

But it is not standard C, and you use it at your own risk.

6.3.2. Data types

C supports the types int, char,
oat, and double, representing respectively integers,

characters, and single- and double-precision
oating point numbers. Declarations may

be include other characteristics. For example,

unsigned short int a;

G. W. Stewart Computer Science for Scienti�c Computing

6.3. C 129

declares a to be a short integer|on today's machines most likely consisting of two

bytes| that has no sign.

C has no logical type. However, whenever an expression must be interpreted in a

logical context, it is true if it is nonzero and false if it is zero.

A variable typed char is represented a word of a size that can contain the (imple-

mentation de�ned) character code. There are a number of special character constants

that are represented with a backslash escape. For example, '\n' is newline and '\0'

is the character whose code is zero. Naturally, '\\' is the backslash character.

C has no string type. Strings are represented as arrays of characters. A string is

always terminated by the character code '\0'. Thus the string

"I am longer than you think."

contains 28 characters, not just the 27 that you see. Note the distinction between 'a',

which is a char, and "a", which is a string. Characters and strings are manipulated by

functions in the standard library.

Declarations can be placed inside of any block, and the variables so declared are said

to automatic or local. Storage is allocated to them on the stack when the block is

entered. Local variables loose their current values when their block terminates, unless

they have been declared static.

6.3.3. Expressions and assignments

The arithmetic operators in C are + (addition), - (subtraction), * (multiplication), /

(division), and % (modulus). C has no exponential operator. To evaluate a power, you

have to use the standard library function pow. The relational operators are <, <=, ==,

>=, > != (6=). The logical operators are && (and), || (or), and ! (negation). These

operators have their natural mathematical precedence. In mixed expressions, operands

are promoted as usual.

In addition C has bitwise operators for and, or, exclusive or, and one's complement.

It also has left and right shift operators

The conditional operator is a compact if statement. An example, occurs in line 15

of ddot

(incx <0) ? (1-n)*incx : 0;

If incx is negative, the expression evaluates to (1-n)*incx; Otherwise it evaluates to

zero.

A widely used operator is the increment operator . Speci�cally, the expression

i++

Draft November 18, 2005

130 6. Languages

evaluates to i but then increases the value of i by one. There is a variant ++i that

increments i and evaluates to the incremented value. There are also two decrement

operators: i-- and --i.

Another important operator is the cast, which converts between types. For example,

in the code

float x;

(double) x

the expression (double) x evaluates to a double-precision number that has the value

of the single-precision variable x.

The basic assignment operator is =. Thus

a = b

assigns the value of b to a, with appropriate conversions if the a and b are not of the

same type. There are variants of this assignment that perform operations along with

the assignment. For example, the statement

dot += x[ix]*y[iy];

from line 18 in Figure 6.3 is equivalent to

dot = dot + x[ix]*y[iy];

There are similar assignment statements for other operations.

A curious fact about assignment statements is that they are also expressions which

evaluate the left-hand side of the assignment. They are often seen in statements like

if ((a = func(b)) > 0) ...

which assigns the value of func(b) to a and then tests if a is positive.

6.3.4. Control statements

C has a while statement of the form

while (<expression>)

<statement>

The <statement> (which may be compound) is evaluated as long as the <expression>

evaluates to true.

One of the most widely used control constructs is the for statement. It has the

form

for (<expr1>; <expr2>; <expr3>)

<statement>

G. W. Stewart Computer Science for Scienti�c Computing

6.3. C 131

This statement is equivalent to

<expr1>;

while (<expr2>){

<statement>

<expr3>;

Thus

for (i=0; i<n; i++)

dot += x[i]*y[i];

from Figure 6.3, line 27, updates dot for i = 0,1,...,n-1. It is permitted change loop

variables in in the body of the loop. Such changes, however, are hard to decipher and

may get in the way of compiler optimization. The break statement is used to leave the

innermost for or while loop. The continue statement causes the loop to restart.

C has a standard if statement, complete with else and else if constructs. The

switch statement, which is close to the Matlab switch, is illustrated by the following

code fragment.

int a[10], i, m, n0=0, n1=0, n2=0;

for (i=0; i<10; i++){

m = a[i]%3

switch (m){

case 0: n0++; break;

case 1: n1++; break;

case 2: n2++; break;

default: /* Can't get here */ ;

}

}

This fragment counts the number of elements in a that are 0, 1, and 2 modulo 3.

Assuming that the elements of a are positive, the variable m can assume only the values

0, 1, or 2. The switch on m match m against the constants following the case's and

executes the corresponding statement when a match is found. Otherwise, the default

is executed. The switch expression (here m) does not have to be an int|char is a

common alternative.

A feature of the C switch statement is that if a case does not end with a break then

execution falls through to the next case. Thus if we remove the break statements, n0

will contain the number of elements for which m is less than or equal to zero; n1, the

number of elements for which m is less than or equal to one; and n2, the number of

elements for which m is less than or equal to two. The pros and cons of this feature are

not easily resolved.

C has statement labels and a goto statement. For a discussion of this construct see

p. 107.

Draft November 18, 2005

132 6. Languages

6.3.5. Functions

The basic computational unit of C is the function. It has the structure

<type> <name>(<parameter list>){

<declarations>

<statements>

}

The type may be omitted and the parameter list may be empty. An example is the

function

double ddot(int n, double x[], int incx, double y[], int incy)

in Figure 6.3. Note how the parameters are typed in the parameter sequence. In what

follows a parameter is a variable in the declaration of a function, and an argument

is a variable or expression in a function invocation.

There are two formal ways to terminate execution of a function. The �rst is by the

return statement which has the form

return <expression>;

This statement causes the function to return to its invoking program with the value of

<expression>. If <expression> is missing, the returned value is unde�ned.

The standard library function exit(int) shuts down the whole program. By con-

vention an argument of 0 represents a successful run, while a nonzero indicates an error.

Arguments to a function are passed by value and therefore cannot be modi�ed. We

will see later how we can get around this limitation by passing pointers to objects.

C allows recursive functions|that is subroutines that invoke themselves. For an

example of such a function, see (6.6).

6.3.6. Program organization

Each program must have a main function of the form

int main(int argc, char *argv[])

This is the function the operating system invokes to start a program. The parameters

argc and argv are used by the operating system to pass information| for example,

command line arguments|to main. They may be omitted, as may the speci�cation

int.

The unit of compilation, called a translation unit, is the �le. A typical �le will

have the following elements, usually in the following order.

1. Preprocessor includes

G. W. Stewart Computer Science for Scienti�c Computing

6.3. C 133

2. Preprocessor de�nitions

3. Declaration or de�nition of external objects

4. Functions

The �rst three items are called the header of the �le.

Large programs will usually broken up into two or more �les, which will depend

on one another. How these dependencies are resolved is too big a topic to treat in

detail. To illustrate some of the ideas we will consider the program in Figure 6.4,

which is distributed among two program �les (file1.c and file2.c) and a header �le

(file.h).

The �rst line of the two program �les brings in the header �le. We will treat this

�le toward the end of this discussion.

The second line in each program �le is a preprocessor macro de�ning a constant

MAX. Whenever the identi�er MAX is encountered, the preprocessor will replace it with

its de�nition. A de�nition is valid only within the �le in which it occurs and only from

the point of de�nition to the end of the �le. In particular, there is no inconsistency

in having a di�erent value for MAX in file1.c and file2.c. By convention uppercase

letters are used in such de�nitions.

The next two lines require some new terminology. A variable declared in a �le but

outside a function is called an external variable. It's declaration is valid in the �le

from the declaration point on, and it can be seen even in the body of functions.

It is important to make a distinction between declarations and de�nitions. In

file1.c the variable a is both declared and de�ned. The initialization makes it a de-

�ned variable. On the other hand in file2.c the variable a is declared but not de�ned.

The storage class speci�er extern says to look elsewhere for a de�nition|perhaps in

the same �le, perhaps in another.

A variable may not be de�ned more than once. If we replace the declaration of a in

file2.c with

int a = 10;

then an error would result, even though the de�nitions are the same. You could replace

it with

int a;

but that is another story.

Note that extern is not just an abbreviation for external. The de�nition of a in

file1 makes a an external variable, even though it is not quali�ed by extern.

The variable c appears to be de�ned in both file1.c and file2.c, but the quali�er

static makes each variable local to the �le in question. Thus there can be no clash

between the two de�nitions.

Draft November 18, 2005

134 6. Languages

file1.c file2.c

|

#include "file.h" | #include "file.h"

|

#define MAX 100 | #define MAX 50

|

int a=10; | extern int a;

extern int b; | int b = 7;

|

static int c=5; | static int c=10;

|

int fu(int, int); | int fu(int x, int y){

| static int z=10;

int bar(int a , int d){ | return a*x + b*y + c*z;

int c; | }

c = a + TWO*d; |

c = (c > MAX) ? MAX: c; | int bar(int, int);

return c*c; |

} |

file.h

#define TWO 2

extern int a;

extern int b;

int fu(int, int);

int bar(int, int);

Figure 6.4: Three program �les

The two functions fu and bar are declared in in both program �les, but fu is de�ned

in file1.c while bar is de�ned in file2.c. There is no need for externs here, since

function declarations not accompanied by a body of code can be a de�nition.

In a function arguments and internal variables declared within the function override

external variables. For example, a and c in the function bar are independent of their

external declarations above. On the other hand, external variables that are not so

overridden are available to the function. This is the case for the a, b, and c in the

G. W. Stewart Computer Science for Scienti�c Computing

6.3. C 135

function fu in file2.c. The static internal variable z in the same function will be

initialized the �rst time fu is invoked and will retain its most recent value when fu is

reinvoked.

Much of the above can be restated succinctly in terms of scope. The scope of a

variable is the part of the program where its declaration is valid. The scope of an

external variable is the entire program, or at least those �les that declare or de�ne the

variable. The scope of a static external variable is con�ned to the �le in which it is

declared|more precisely the part of the �le from the declaration on. The scope of a

function parameter is the body of the function and it overrides any external variables.

The scope of an automatic variable is the block in which it is declared, and it overrides

external variables and variable declared in containing blocks.

Declarations and de�nitions in separate �les are brought together by the linker,

which takes separately compiled programs and turns them into a single executable

object program. We will treat linkers later in this division.

Large programs will often have large, overlapping headers. Changes in one header

will have to be echoed in the other headers. This process is obviously and invitation

to wholesale blunders. The cure is to collect all external declarations into a common

header �le and include it at the beginning of each program �le. In Figure 6.4 the

�le file.h is such a header �le. It de�nes TWO as the constant 2 and declares the

external variables a and b and functions fu and bar. Note that there is nothing wrong

in redeclaring or de�ning a variable already declared, provided the new declarations are

consistent with the old. Thus the header �le causes no errors in file1.c and file2.c.

C provides special header �les for programs in the standard library. Of particular

importance for scienti�c computing is math.h.

The organization of large programs is something of an art. You are well advised to

study some speci�c large programs or systems, before undertaking the writing of one

yourself.

6.3.7. Pointers

C provides a means of determining the memory address of an object. Speci�cally, if a

is a variable, then &a is its address. Since &a points to the location of the value of a,

it is called a pointer. If b is a pointer, then *b is equivalent to a variable whose value

is found at b. The operator & is called the address operator, and the operator * is

called the indirection or dereferencing operator.

The declaration

int a, *b;

declares a to be of type int and b to be a pointer of type int. The assignment

b = &a

Draft November 18, 2005

136 6. Languages

makes b point to a. The dereferenced pointer *b can be used in place of a. For example,

the expressions

a/5 and *b/5

produce the same result.9 The dereferenced pointer *b can even be used as the target

of an assignment. The statements

a = 5; and *b = 5;

have the same e�ect.

An important use of pointers is to get around the limitations of call by value. As a

silly example, suppose we want to compute the Fibonacci sequence de�ned by

a0 = 0; a1 = 1; ai+1 = ai + ai�1 i = 1; 2; : : : :

Here is a function that tries to replace (ai�1; ai�2) with (ai; ai�1).

void fib(int ai, int aim1){

int temp;

temp = ai;

ai = ai + aim1;

aim1 = temp;

}

The hope is that the program

int f=1; ff=0;

for (i=2; i<=10, i++)

fib(f, ff);

will compute the �rst 10 Fibonacci numbers.

Unfortunately, the function does not work because the changes in the parameters

ai and aim1 are not re
ected in the arguments f and ff. However, if we rewrite our

original function in the form

void fib(int *ai, int *aim1){

int temp;

temp = *ai;

*ai = *ai + *aim1;

*aim1 = temp;

}
9There is a deadly inconsistency in the C syntax regarding pointers. The expression 5/*b does not

divide 5 by the value of b. It is 5 followed by the beginning of a comment. You must write 5/(*b).

G. W. Stewart Computer Science for Scienti�c Computing

6.3. C 137

then the sequence

int f=1, ff=0, i;

for (i=2; i<=10, i++)

fib(&f, &ff);

(6.13)

does compute the Fibonacci numbers. The reason is that we have passed pointers to

f and ff instead of their values. The use of the dereferencing operator in fib causes

causes the values of f and ff to be changed.

The general procedure for altering the argument of a function has three parts.

1. Pass a pointer to the argument instead of the argument.

2. In the function type the parameter corresponding to the argument as a pointer

of the appropriate type.

3. In the body of the function use the dereferencing operator with the parameter.

Pointers can also be used to pass a function as an argument to a function. As a

trivial example, suppose we want a function squarefx that computes the square of

functions of x. This can be done as follows.

squarefx(double x, double (*f)(double)){

double temp;

temp = (*f)(x);

return temp*temp;

}

If we de�ne

double g(double y){

return y/2;

}

then

squarefx(8, g); (6.14)

returns 16.

The quirky notation

double (*f)(double)

says that f is a pointer to a function of a double that returns a double. This is to be

contrasted with the declaration

double *f(double)

Draft November 18, 2005

138 6. Languages

which says that f is a function of a double that returns a pointer to a double. There is

no need to apply the address operator to g in (6.14); since g is known to be a function,

the compiler does the right thing.

One can add integers to pointers. The result is best illustrated by an example.

Suppose p is a pointer to a type that consists of two bytes. Consider the following

memory diagram.

p ! a=p

 a+1

p+1! a+2

 a+3

p+2! a+4

 a+4

On the left is shown the memory location pointed to by p, p+1, etc. On the right is

shown the actual address of that memory location in bytes. Of course the memory

addresses are initially the same. But each increment of p by one skips two bytes of

memory.

What is going on here is that C looks at the type of p, determines its size of its type,

and changes the pointer by multiples of that size. Thus if our object were of type double

and we were to imagine an array of doubles stored consecutively in memory beginning

at p, then p+1 would point to the second double, p+2 to the third, p+3 to the fourth,

and so on. All this suggests a close relation between pointer and arrays, which we will

now explore.

6.3.8. Arrays

We have already met with linear or 1-dimensional arrays in our ddot example. The

statement

double x[10], y[5];

declares x to be an array of doubles of length 10 and y to be an array of doubles of length

5. In C array indexing begins at zero, so the last element in x is x[9]. The standard

requires that the elements of an array be stored consecutively in memory. An important

restriction is that the dimensions de�ning an array must constant or expressions made

up of constants. Thus the construction

int fu(int n){

int work[n];

.

}

G. W. Stewart Computer Science for Scienti�c Computing

6.3. C 139

is illegal. Otherwise put, 1-dimensional arrays cannot have variable length.

The variable name x standing alone is a pointer. It is a constant pointer; that is,

it's value cannot be changed, as can the value of a declared pointer. It points to the

beginning of the array, so that *x is the same as x[0]. Moreover, from our comments

on pointer arithmetic it follow that for any integer *(x+i) and x[i] are the same.

The converse is true. If a is a pointer, not necessarily associated with an array, then

the expression a[i] has the same value as *(a+i).

When an array name appears in an argument list, its value as a pointer is passed

to the invoked function. This means that the the function can change the elements of

the array. For example, here is a simple C version of DAXPY.

void daxpy(int n, double a, double x[], double y[]){

int i;

for (i=0; i<n; i++)

y[i] = y[i] + a*x[i];

}

We could also do the same thing with pointer arithmetic.

void daxpy(int n, double a, double x[], double y[]){

int i;

for (i=0; i<n; i++)

*(y+i) = *(y+i) + a*(*(x+i));

}

Thus far the C array looks like a Fortran 77 array with pointer embellishments. But

there is an important di�erence. In Fortran 77 a call like

ddot(n-i, x[i], y[i]);

will compute the dot product of the last n-i elements of x and y. But this will not work

in C, which passes the values of x[i] and y[i]. If you have been careful, and typed

ddot properly as

void ddot(int, double, double[], double[]);

then the compiler will catch the inconsistency. If not, you will probably get a memory

exception when ddot attempts to use a double as an address. The cure is to write

ddot(n-i, &x[i], &y[i]);

which passes pointers to the appropriate part of the array.

C also has multi-dimensional arrays. The declaration

double x[5][7];

Draft November 18, 2005

140 6. Languages

de�nes x to be a doubly subscripted array of doubles. Two dimensional arrays are stored

in row-major order, as illustrated in Figure 3.5. If x is an m�n array, then the address

of x[i][j] is

&x[i][j] = x + j + n*i. (6.15)

Because pointer arithmetic is relative to the size of the pointer type, this formula is

valid whatever the type of x. Note that the expression depends only on n|that is

the trailing dimension of x. This is in contrast with column-major order, in which the

address depends on the leading dimension, as in (6.10).

Unfortunately, the restriction that the dimensions in the declaration of an array

must be constants or constant expressions means that doubly subscripted arrays are

diÆcult to use e�ectively. Suppose, for example, that x is declared as above, and we

wish to pass it to a function|say fu. Then somehow we must associate the trailing

dimension of x with the parameter corresponding to x. A Fortran-like construction

might de�ne fu as

double fu(int ldt, double y[][ldt]){

and invoke it with

fu(7, x);

Unfortunately this construction is illegal in C, since ldt is not a constant expression.

The only proper construction is

double fu(double y[][7]){

which makes it impossible for fu to be used with any 2-dimensional array whose trailing

dimension is other than 7.

This inability to pass dimensions through a calling sequence is one of C's prime

defects. A cure is to pass a pointer to the array in question along with its trailing

dimension and use pointer arithmetic, a la (6.15). A really good optimizing compiler

should be able to produce machine code that is as eÆcient as that produced by ordinary

array indexing. However, pointer arithmetic is much harder to read that array indexing.

An ad-hoc solution that uses the preprocessor to simulate array indexing is treated in

Exercises ??.

6.3.9. Structures

C structures are a way of combining objects of several types into one object. We will

begin with a simple example of a structure.

A vector x is sparse if most of its elements are zero. It would be ineÆcient to

represent a sparse vector as 1-dimensional C array, since most of the array would be

G. W. Stewart Computer Science for Scienti�c Computing

6.3. C 141

devoted to storing zeros. An alternative is called compressed representation, which

we now describe.

Suppose our vector x is of dimension n and has nnz nonzero elements. Then we

store the nonzero elements of x in an array x of size at least nnz. In a parallel array ix

(for index) we store the indices of the nonzero elements. Thus the vector

x = (0; 5; 0; 0; 2; 0; 0; 1)

would be stored as

x : 5.0 2.0 1.0

ix: 2 5 8

Note that the entries in ix are required to be strictly increasing. The vector x is

completely represented by the variables n, nnz, x, and ix.

The trouble with this representation is that to represent more than one vector, we

need new names for n, nnz, x, and ix. If we have many such vectors, any naming scheme

will break down. C solves this problem by arranging these variables in a structure

which can be given a name of its own.

Speci�cally, we can declare a structure for compressed representation by

struct crvec{

int n;

int nnz;

double x[MAXSIZE];

int ix[MAXSIZE];

};

(6.16)

Here MAXSIZE is presumed to have been #defined previously. We can then declare a

number of compressed vectors by the statement

struct crvec v1, v2, v3;

The members of the structure v1 can be referenced by by writing v1.n, v1.nnx, v1.x

and v1.ix.

Figure 6.5 contains a function that computes the dot product of v1 and v2. The

idea of the program is that only elements v1[i1] and v2[i2] for which

v1.ix[i1]==v2.ix[i2]

contribute to the inner product (why?). Thus spdot increases now i1, now i2 looking

for indices that satisfy the above condition. The code is best understood by working

through a simple example to see how i1 and i2 leapfrog over each other.

There is one problem with this code. When a structure is passed by value|as it

is in dot|the entire structure is copied. For large structures this is wasteful of time

and memory. An alternative is to pass a pointers to the structures, in which case the

function becomes

Draft November 18, 2005

142 6. Languages

double spdot(struct crvec v1, struct crvec v2){

int i1=0, i2=0;

double sum = 0.0;

while (i1 < v1.nnz && i2 < v2.nnz){

if (v1.ix[i1] < v2.ix[i2])

while (v1.ix[i1] < v2.ix[i2])

i1++;

else

while (v2.ix[i2] < v1.ix[i1])

i2++;

if (v1.ix[i1] == v2.ix[i2]){

sum = sum + v1.x[i1]*v2.x[i2];

i1++; i2++;

}

}

return sum;

}

Figure 6.5: Sparse dot product

double dot(struct crvec *v1, struct crvec *v2){

The notation for reference a member of a structure by a pointer is unusual. For example,

to reference nnz in v1 we must write

(*v1).nnz

The parentheses are required because . has precedence over *. Since this notation is

awkward, C provides an equivalent that is easier to read: namely,

v1->ix[i1].

Thus to convert the code in Figure 6.5 all one needs to do is replace .'s with ->'s.

In designing structures, it is important to keep in mind that its members appear

in memory in the order they appear in the structure de�nition and they are properly

aligned. This can cause memory fragmentation, of which (2.2) is an example. To

drive the point home, consider the following two structures.

G. W. Stewart Computer Science for Scienti�c Computing

6.3. C 143

struct x{ struct y{

double a; double a;

double b; int c;

int c; double b;

int d; int d;

}; };

(6.17)

Assuming that the size of a double is eight bytes and the size of an int is four bytes, the

structure x requires 24 bytes where as the functionally equivalent structure y requires

32 bytes. The di�erence is unimportant if only a few of these structures are to be

declared. But if a large array is needed, then the savings for using x over y can be

considerable.

There are more to structures that this. For example, a structure cannot have itself

as member, but it can have a pointer to itself. This is useful in creating linked lists

of structures. Moreover, there are other constructions that bind things together like

structures. But the present exposition gives the
avor of this important construct.

6.3.10. Memory allocation

A diÆculty with the structure crvec is that its arrays are all of length MAXSIZE. There

are two ways in which this is unsatisfactory. First, if we encounter a vector with

nnz > MAXSIZE we cannot use the structure prvec. Second, it wastes memory if most

of the vectors at hand have fewer than MAXSIZE nonzero components. What we would

really like is to have a function

construct(struct prvec *v, int nnz)

that initializes the storage for the arrays v->x and v->ix. We can write such a function

using the standard library function malloc.

The �rst thing that we must do is change the de�nition of prvec to get rid of the

initialization by MAXSIZE:

struct prvec{

int n;

int nnz;

double *x;

int *ix;

};

Because of the relation between pointers and vectors, we can still use the notation x[i]

to refer to the ith element of x. The code for construct is now

Draft November 18, 2005

144 6. Languages

void construct(struct prvec *v, int nnz){

v->nnz = nnz;

v->x = (double *) malloc(nnz, sizeof(double));

v->ix = (int *) malloc(nnz, sizeof(int));

}

To see what is happening, let us look at what the statement

v->x = (double *) malloc(nnz, sizeof(double));

is doing. The heart of the matter is the invocation of malloc, which allocates storage.

The �rst argument nnz speci�es the number of aligned storage units to return. The

second argument says that the size of a storage unit is to be the size of the type double.

Thus malloc returns (for IEEE double) a pointer to 8*nnz consecutive bytes of memory

properly aligned for double. The pointer is of type void, which is not the same as a

pointer of type double, consequently the cast (double *) is needed to convert it before

it is assigned to v->x.

The function malloc obtains storage from the heap, a pool of free memory. The

heap is not in�nite, however, and one should free up heap memory when it is not in

use. For our structure we might write a special function destruct to free the values in

a prvec. Here is how it is coded.

void destruct(struct prvec *v){

free(v->x);

free(v->ix);

}

Note that if v were repeatedly constructed but never destructed, say in a loop in

which vector sizes vary, then the heap will eventually run out of memory. This situation

is called a memory leak and is a frequent source of program failures in C.

6.4. Fortran 95

Fortran 95 is a minor extension of Fortran 90, which in turn is a major reworking of

Fortran 77. Although it is backward compatible with Fortran 77, it looks and programs

like a di�erent language. It is widely used in Europe; less widely so in the United States.

But it is well worth considering for scienti�c computing. Its designers crafted its new

features, such as pointers, so that the language remains easy to optimize. The Fortran 95

module is a
exible device for organizing large programs and packages. And its array

features are more supple than those of any other programming language. However, it

not really suitable for object oriented programming (which we will treat in the next

subsection in connection with C++).10

10A new extension, Fortran 2003 supports full object oriented programming. But it has just been

released and compilers are not readily available.

G. W. Stewart Computer Science for Scienti�c Computing

6.4. Fortran 95 145

1. integer parameter wp = kind(0.0D0) ! Working precision

2.

3. subroutine daxpy1(n, a, x, y)

4.

5. ! axpy computes y = y + a*x, where

6.

7. integer intent(in) :: n ! The size of the vectors.

8. ! x and y.

9. real(wp) intent(in) :: a, & ! a constant.

10. x(:) ! The vector x.

11. real(wp) intent(inout) :: y(:) ! The vector y.

12.

13. jloop: do j=1,n

14. if (a == 0) exit jloop

15. do i=1,n

16. y(i) = y(i) + a*x(i)

17. end do

18. end do jloop

19. end subroutine daxpy1

Figure 6.6: Stride 1 AXPY

Space does not allow us to discuss Fortran 95 (and later C++) at the level of detail

we treated Fortran 77 and C. We will begin with a quick sketch of some of the basic

extensions of Fortran 77 and then turn to the new features important for scienti�c

computing.

6.4.1. Basic extensions

Here we will treat extensions under the heading of format, types, and control.

� Format Fortran 95 remains a line oriented language: statements are terminated

by an end of line. However it has shed the �xed �elds of Fortran 77, and has more

exible commenting and continuation conventions. This is illustrated in Figure 6.6

which contains a stripped down AXPY with a default stride of one. A comment begins

with an exclamation point and continues to the end of its line. An ampersand (&) causes

the statement to be continued to the next line.

� types Fortran 95 has the same basic types as Fortran 77: integer, real, complex,

logical and character. But it provides a new mechanism for specifying variations of

these basic types. Speci�cally, each type supported by a system has a system-de�ned

Draft November 18, 2005

146 6. Languages

number called its kind associated with it, which can be retrieved by the kind function.

For example, line 1 in Figure 6.6 creates an integer parameter wp (for `working precision')

that is the kind of a double precision real. Its appearance in line 9 causes a and x to be

declared to be double precision real. Just changing line 1 to

integer parameter wp = kind(0.0E0)

would change daxpy1 to a single precision routine.

The speci�cation statement has a new form that allow you to pile up speci�cations.

Of these, the intent speci�cation tells the compiler the read and write status of a

dummy argument.

The de�ned type is the equivalent of the C structure. For example, the Fortran

equivalent of the structure crvec in (6.16) is

type crvec

integer :: n

integer :: nnz

real(wp) :: x(MAXSIZE)

integer :: ix(MAXSIZE)

Here is is assumed that wp and MAXSIZE have been previously de�ned. Variables of type

crvec can be declared as follows.

type(crvec) :: x, y, z

The implicit typing of Fortran 77 can be suppressed by the

implicit none

statement, which must appear at the start of the programming unit. Its universal use

is strongly recommended.

� Control Fortran has completed the usual complement of control constructs by the

addition of a switch-case statement. The do construct has been overhauled in several

ways.

1. A do can be terminated by an end do, which eliminates the need for numeric

labels.

2. The statement do alone produces and in�nite loop.

3. A do while(<exp>) has been added. The loop is executed as long as <exp>

evaluates to true.

4. An exit statement causes the innermost loop containing the statement to

be terminated. A cycle statement causes the innermost loop containing the

statement to be restarted.

G. W. Stewart Computer Science for Scienti�c Computing

6.4. Fortran 95 147

5. A name, which is not to be confused with a label, can be attached to a do,

as illustrated by lines 13 and 18 in Figure 6.6. Passively, this device makes it

easy for the compiler to check for correct loop nesting. Actively, the exit and

cycle can name the loop they a�ect. This is illustrated in line 14, although

in this case the name is redundant.

6.4.2. Program organization

The basic programming units for Fortran 95 are the program, the subroutine, the func-

tion, and the module. Fortran 95 inherits the program statement as well as subroutines

and functions of Fortran 77. An important extension is that both subroutines and

functions can be invoked recursively.

Another useful extension is the ability to declare arguments to be optional. For

example, consider the following subroutine.

subroutine getvals(A, v1, v2, v3, v4)

type(source) :: A ! A derived type from which

! v1,...,v4 is to be computed.

real(wp) :: v1, v2 ! Values that are always returned.

real(wp), optional :: v3, v4 ! Values that are optionally

! returned.

The calling sequence

call getvals(A, v1, v2, v3)

will return the values v1, v2, and v3, but not v4. If you want v4 but not v3 v3, you

can write.

call getvals(A, v1, v2, v4=valfour),

which will return the fourth value in the variable valfour. The presence of an optional

argument can be test by the present function.

A subroutine or function may contain internal functions or subroutines. These

subprograms can see the variables declared in the containing subprogram. They are

useful for performing tasks that are particular to the containing subprogram.

The Fortran 95 module, which is new to Fortran, is an elegant way of dividing

programs into manageable pieces. It has the form

module <module name>

<definitions and specifications>

contains

<subprograms>

end module <module name>

Draft November 18, 2005

148 6. Languages

For example, suppose we want to bundle axpy and dot into a single package. Then we

might proceed as follows.

module axpydot

implicit none

integer parameter :: wp = kind(0.0D0)

contains

<code for the subroutine axpy>

<code for the function dot>

end module axpydot

A programming unit can invoke a module by the use statement. For example a program

that needs both axpy and dot might begin

subroutine fubar(<parameter list>)

use axpydot

implicit none

...

end subrouting fubar

Programs using a module can access the de�nitions and subprograms contained

in the module. This fact largely obviates the need for global variables and common

statements. Variables and functions that must be shared among programming units

can be placed in modules where they can be used as required. Because modules can use

other modules, the modularization of a program or package can be quite �ne-grained.

Commonly used groups of modules can then be collected into larger modules, so that a

programmer can access a group with one use statement.

Exercises

1. The following doubly recursive Matlab function, computes the sequence of Fibonacci num-
bers.

function m = fib(n)

if n==0 | n==1,

m=1;

else

m = fib(n-1) + fib(n-2);

end

return

1. Run this program for n=1:5;30. What (approximately) is the ratio fib(n+5)/fib(n)?

G. W. Stewart Computer Science for Scienti�c Computing

6.4. Fortran 95 149

2. Assume that fib(0) and fib(1) take time T1 = T2 = 1 to execute, and that for larger
values of n the time Tn is the sum of the times to evaluate fib(n-1) and fib(n-2).
What is Tn.

3. What are the implications of the �rst two parts for the function fib? What about
double recursion in general.

Draft November 18, 2005

