
3. The CPU

Most people are blissfully unaware of the central processing unit. They write, compile,

and run their programs with no worry about how they actually execute; and for the

most part their programs run with reasonable eÆciency. Generally speaking, this is also

true of scienti�c computing. Yet there are times when seemingly minor modi�cations to

a program can speed it up dramatically, and the sources of the speedups are often to be

found in the behavior of the central processing unit or its interaction with the memory

hierarchy. In this section we will treat the CPU.

The design and analysis of central processing units is a topic that can �ll volumes. In

this highly selective presentation we will concentrate on the aspects that are immediately

useful to the scienti�c programmer. We begin this section with an overview of how a

CPU processes data. We will then discuss a speci�c machine, the MIPS64. This machine

will be used in the next section to discuss instruction pipelining, the most important of

a number of techniques used to design fast CPU's. We will then turn to
oating-point

computations, illustrating our discussion with two widely used vector operations. This

lays the basis for a treatment of vector computers.

3.1. Overview

Synopsis: The CPU processes data by executing a sequence of instructions stored in memory.
Ordinarily instructions are executed in the order they appear sequentially in memory. But jump
and branch instructions can be used to override the natural sequence. Today's CPU's are usually
load-and-store machines. They have many registers where operations are performed. Special
load and store instructions are used to move data to and from memory. These instructions have
addressing modes that aid in computing the address of a memory reference.

The execution of the CPU is synchronized by a clock. The time between two ticks of a clock
is called a cycle, and the speed of the CPU is measured in cycles per second, aka hertz. The
execution of an instruction usually takes several cycles, the number of which may vary from CPU
to CPU. Thus raw clock speed is not a reliable predictor of the performance of a computer.

|

We have already observed that a CPU does its work by modifying data in registers or

main memory according to a sequence of instructions that are themselves contained in

main memory. The address of the current instruction is contained in a special register

called the program counter (PC). Ordinarily the instructions are executed in the

order that they appear in memory. Equivalently, after each instruction is executed the

PC is incremented by the length of the instruction.

This arrangement is suÆcient to evaluate a sequence of expressions, but it precludes

branching|the basis of control statements of a high-level programming language. Con-

sequently, the CPU has instructions that override the default incrementation of the PC.

35

36 3. The CPU

There are three types of such instructions. A jump changes the PC to some value

speci�ed by the programmer. It is the equivalent to a goto in a high-level programming

language. A branch changes the PC to one of two values depending on whether a cer-

tain condition is satis�ed. The condition varies with the architecture of the CPU. For

example, a branch may depend on whether an arithmetic operation has just produced

a negative result. Branches are used to implement if statements and loops. The �nal

instruction is a jump and save PC, which saves the value of the PC before changing

it, so that the program knows how to get back to where it was. It is used to implement

subprogram calls. Note that the terminology for these instructions varies from machine

to machine.

The CPU must also interact with main memory to fetch instructions and operands

and to store results. There are two aspects to this interaction. The �rst concerns

how operands are fetched and results are stored. One long defunct approach, called

memory-memory architecture, has each individual instructions fetching its operands,

performing its operation, and storing its result|all in one fell swoop. Another approach

is to have a single register, usually called an accumulator, in which operations are per-

formed. Both these approaches|especially the accumulator|had decided advantages

in the days when hardware and registers were costly. Today the trend is to provide a

plentiful supply of registers and to perform all operations in them. Special instructions

load operands from memory and store back results. This decreases memory references

and encourages the reuse of operands already in registers. Such a computer is called a

load-store computer.

The second aspect is how memory addresses are computed. For example, if one is

looping to sum the elements of an array, one must compute the address of each element

to load it to a register. It is desirable that the load instruction lend an hand. Over the

years, many di�erent addressing modes have been devised. We will return addressing

modes when we consider the MIPS computer.

The execution of a CPU is synchronized by a clock, which beats time for the op-

erations of the CPU. The interval between two beats is called a cycle. The speed of a

CPU is generally measured in cycles per second or hertz. Thus a 2GHz (giga hertz)

system has a clock that runs through two billion cycles in a second. The period or

cycle time of a clock is the time required for a single cycle. It is the reciprocal of

its speed in hertz. Thus our 2GHz clock has a period of 0.5 nanoseconds. To put this

in perspective, a beam of light in a vacuum travels about half a foot in 0.5 ns. Since

nothing travels faster than light, no 2GHz CPU can be larger than half a foot (and in

practice it must be considerably smaller).

How is an instruction executed? The actual execution is done by logic circuits

that are built up from primitive units called gates. The following diagram illustrates

an AND gate.

G. W. Stewart Computer Science for Scienti�c Computing

3.1. Overview 37

x

y
a

The gate has two inputs, x and y, and one output, a. The inputs and outputs are

currents at one of two nonoverlapping voltage ranges: high and low. A low voltage

represents a 0 bit and a high voltage represents a 1 bit. The output of the gate is the

logical and of its inputs| that is, a is 1 if and only if both x and y are 1. There are a

variety of gates: inverters, OR gates, XOR gates, and so on.

Gates can be combined to produce more complicated functions. As a simple example,

the following combination of two AND gates

a
z

y

x

gives a three-input AND gate, whose output is 1 if and only if all its inputs are 1. More

complicated combinations yield circuits that can perform shifts, additions, and many

other operations. An important aspect of these circuits is that it takes time for the

inputs to propagate through them|their outputs do not appear instantly.

Returning to the execution of an instruction, at the beginning of a cycle the instruc-

tion is in a special register called the instruction register (IR). At the tick of the clock,

data
ows from the IR and the registers through the logic circuits. Under control of the

IR register, the logic circuits produced the desired results which pile up at the registers.

At the end of the cycle, the results are latched into the registers and the CPU proceeds

to the next instruction.

All this is an oversimpli�cation. In practice an instruction usually takes several

clock cycles to execute. For example, in one cycle the instruction may be fetched from

memory and placed in the IR. In the next, the instruction may be decoded to send

control signals to the logic circuits. Another cycle may be required to compute the

results of the instruction, and another to deliver it to the appropriate registers. This

multiplicity of cycles means that the CPU must have internal or working registers to

store intermediate results. These registers are invisible to the programmer: they cannot

be directly written or read. The instruction register is an example of such an internal

register.

The fact that instructions require several cycles to execute highlights the limitations

of the clock speed as a measure of performance. Performance also depends on the

nature of the instructions the computer can execute, how much their executions can be

overlapped or pipelined, and how quickly items can be transferred between the CPU and

memory. Thus two computers with the same clock rate may perform quite di�erently

Draft September 26, 2005

38 3. The CPU

on a given application. However, of two computers with the same basic architecture,

the one with the faster clock will generally outperform the other.

3.2. The MIPS64 computer

Synopsis: The MIPS64 is a load-store reduced instruction set computer that works with 64
bit registers. It has 32 general-purpose registers and 32
oating-point registers. In describing
the MIPS instruction set, we use assembly language conventions.

MIPS has a displacement addressing mode in which a register is added to a base contained in
the instruction to get the �nal memory address. It also has an immediate addressing mode, in
which an operand is contained in the instruction.

MIPS has a full complement of load-store, arithmetic-logical, branch, and jump instructions,
along with instructions for comparing the contents of registers.

Some of the features of MIPS are illustrated by an implementation of AXPY, which overwrites
a vector y with ax+ y.

|

3.2.1. Registers

The MIPS64 computer (here shortened to MIPS) is a embedded computer|that is a

computer designed to be incorporated into devices, like cell phones and hand calcula-

tors, that require computer assistance. The 64 refers to the fact that it operates with

64 bit words. It is load-store reduced instruction set computer (RISC). The basic

architecture was developed by John L. Hennessy, author with David A. Patterson of

Computer Architecture: A Qualitative Approach (3rd edition), where it is used as run-

ning example. You should look to this excellent compendium for more details on some

of the topics in this section.

The MIPS has 32 general purpose registers named R0, R1, . . . , R31, each containing

64 bits. The register R0 always contains zero. The MIPS also has 32 double-precision

oating-point registers F0, F1, . . . , F31, which can also be used for single-precision

numbers. In addition there are some special purpose registers that need not concern us

here.

3.2.2. Assembly languages

In order to treat MIPS instructions we need a language to talk about them. In the very

earliest days of computers, these instructions would have been coded as binary numbers.

Needless to say it was quickly realized that writing out a program in binary was a time-

consuming, error-prone task. The cure was to write the program in a coded form and

let another program, called an assembler, translate it into the numerical form the

G. W. Stewart Computer Science for Scienti�c Computing

3.2. The MIPS64 computer 39

machine could execute. Thus when people speak of machine language programs they

usually mean assembly language programs. As it has turned out, assembly programs

have been largely superseded by compiled programs written in high-level programming

languages. Nonetheless, it is useful to be able to read assembly language programs| for

example, to determine what a compiled program is actually up to. We will use assembly

language constructs in describing the MIPS instructions.

3.2.3. Instructions

MIPS has a �xed-length instruction format of 32 bits. The �rst six bits form an opera-

tion code which tells what the instruction does. The �xed length makes it easy to fetch

instructions. The uniform operation-code �eld helps in the decoding of instructions.

There are three distinct MIPS instruction formats, which are illustrated in Fig-

ure 3.1. We will examine the I-type instruction in detail because it illustrates a number

of points about the operation of the MIPS machine. We will then brie
y discuss the

other two.

I-type instructions perform four general functions: reading and writing memory,

performing immediate operations, implementing branches, and implementing register

jumps. We will consider each of these functions in turn.

Instructions that move data between registers and memory are called load-store

instructions. For example, the MIPS instruction

LD R5, 24(R17)

causes a double word to be loaded from memory into register R5. The abbreviation LD

stands for Load Double, and it corresponds to a particular con�guration of bits in the

operation-code �eld of the instruction. The register R5 is the destination register, and

the corresponding �eld of the instruction contains 001012. Similarly, R17 is the source

register, so that the corresponding �eld contains 010012. Finally, 24 is the immediate

value, so that the immediate �eld contains 1816.

The address of the word to be loaded is computed by adding the contents of the

immediate �eld, 24, to the contents of the source register R5. This addressing mode

is useful in loops where elements of an array must be loaded in succession. For example,

if the array consists of contiguous double words in memory, one only has to increase R5

by 8 to point the instruction to the next word in the array. Note that if R17 is replaced

by R0 (which is always zero), the instructions loads the word at the absolute address of

24.

MIPS has a variety of load-store instructions to manipulate words of all sizes from

bytes to double words.

I-type instructions also implement immediate operations, another addressing

Draft September 26, 2005

40 3. The CPU

Register
Operation

Code
Source

Register

Operation
Code

Source
Register 1

Source
Register 2

Destination
Register

I−type instruction

R−type instruction

J−type instruction

Operation
Code PC Offset

6 26

Destination

6 5 5 5 11

Function

Immediate

6 5 5 16

Figure 3.1: Instruction formats for the MIPS

mode in which one of the operands is contained in the instruction itself. For exam-

ple the instruction

DADDI R17, R5, #7

places 7 plus the contents of R7 in R17. The number 7 occupies the immediate �eld,

which is always treated as a 2's complement signed integer. Again

DSRLI R3, R2, #4

places the result of performing a logical right shift on the contents of R2 in R3. The

source and destination registers can be the same, so that

DADDI R1, R1, #-1

G. W. Stewart Computer Science for Scienti�c Computing

3.2. The MIPS64 computer 41

decrements the contents of R1 by one.

By incorporating one of its operands into itself an immediate instruction saves having

to load the operand from memory. However, the small size of the immediate �eld limits

the size of the operand. Moreover, the operand is hard wired into the program and

cannot be changed.4

The MIPS has branch instructions that test whether a register is zero or nonzero

and branch accordingly. For example, the code

BEQZ R1, #-100 (3.1)

adds �100�4 + 4 to the PC if the contents of R1 (which is the source register in the

I-format) are zero and otherwise does nothing. This e�ects a conditional backward

jump of 99 instructions in the program. The product �100�4 comes from the fact that

instructions are a �xed 4 bytes in length. A branch of this kind is said to be PC

relative. The fact that the immediate �eld contains only 16 bits, restricts a branch

induced jump to about 130;000 instructions in either direction. However, a branch can

be combined with other jump instructions to produce larger conditional jumps.

Finally, the I-type format implements jump-register instructions. Speci�cally, the

code

JR R1

causes an absolute jump to the address contained in R1.

The R-type instructions implement operations involving registers. For example, the

code

DSUB R5, R3, R20

subtracts the contents of source register R20 from those of source register R3 and places

the result destination register in R5. Again the code

MUL.D F2, F4, F6

multiplies the double-precision
oating-point numbers contained in the registers F4 and

F6 and places the result in F2.

An important class of R-type instructions is the set conditionals. For example,

SNE R1, R2, R3

4Actually, since instructions reside in memory, a program can, in principle, change the immediate

�eld of one of its instructions. In the early days of digital computing this was regarded as a virtue of

von Neumann machines. Nowadays, however, code is always left inviolate, so that di�erent processes

can share it. Such code is called reentrant. For more see x8.2.3.

Draft September 26, 2005

42 3. The CPU

sets R1 to 1 if the contents of R2 and R3 are not equal and otherwise sets R1 to zero.

These tests, which include LT, GT, LE, GE, EQ, in addition to NE, can be combined

with the branch instructions to implement branches for all six conditions. There are

analogous set conditionals for
oating-point numbers.

The J-type instructions implement jumps. For example,

J #100 (3.2)

changes the PC to PC+ 4�100+ 4. This handling of the PC is analogous to the branch

instructions. However, since the PC o�set �eld contains 26 bits the possible size of a

jump is over 130M instructions. A corresponding jump-and-link behaves in the same

way, but is also saves PC+ 4 in R31. As we have already mentioned, jumps of this type

can be used to implement calls to subprograms.

3.2.4. An example: AXPY

As a nontrivial example of MIPS code we will consider the process of overwriting a

vector y with ax+ y, where x is a vector and a is a scalar. This operation is common

in scienti�c computing and is called an AXPY for A X Plus Y. (When it is necessary to

distinguish single from double precision versions, AXPY becomes SAXPY and DAXPY

respectively.)

Using Matlab notation, an AXPY can be written in scalar form as

for i = 1:n

y(i) = y(i) + a*x(i);

end

(3.3)

where n is the dimension of the vectors x and y. Figure 3.2 gives a MIPS implementation

of this loop. From the accompanying comments it should not be diÆcult to puzzle out

how this code works. But here are some additional points.

� Loop is a symbolic name for the address of the instruction beginning the AXPY loop,

and it is referenced in the branch at the end of the loop. The assembler is responsible

for reconciling these references so that the branch goes to the right place.

� The number 8 in the DADDI's is the length of a double-precision number in bytes.

� The variable i has disappeared from the implementation. Its place has been taken

by the registers R1 and R2, which contain the addresses of x(i) and y(i). The fact

that two registers, R1 and R2, instead of the single integer i must be updated at each

stage of the loop, shows that there is more to indexing a variable than meets the eye in

a high-level programming language.

� Since, at the end of the loop, there is no i to compare with n, the address of y(n+1)

is compared with the address R2.

G. W. Stewart Computer Science for Scienti�c Computing

3.3. Instruction pipelines 43

This code implements the AXPY loop (3.2) in double precision. Initially it is assument

that

R1 contains the address of x(1)

R2 contains the address of y(1)

R3 contains the address of x(1) plus 8*n

F0 contains the constant a

1. Loop: L.D F1, 0(R1) ; load x(i)

2. L.D F2, 0(R2) ; load y(i)

3. MUL.D F1, F0, F1 ; a*x(i)

4. ADD.D F2, F2, F1 ; y(i) + a*x(i)

5. S.D O(R2), F2 ; store new y(i)

6. DADDI R1, #8 ; update address of x(i)

7. DADDI R2, #8 ; update address of y(i)

8. DSUB R4, R1, R3 ; zero at end of loop

9. BNZE R4, Loop

Figure 3.2: MIPS implementation of AXPY

3.3. Instruction pipelines

Synopsis: The classical example of a pipeline is the automobile assembly line. Cars are moved
from stage to stage of the line. At each stage a speci�c part of the assembly is performed.
Although it takes time proportional to the number of stages for a car to be assembled, cars pop
out of the assembly line at the rate they move from stage to stage.

Instructions in the MIPS take �ve cycles to execute, corresponding to �ve distinct stages. Conse-
quently, after one instruction completes the �rst state, a second can follow it into the instruction
pipe line. After �ve instructions have done so, MIPS will be executing instructions at the rate
of one per cycle.

Unfortunately, certain hazards can cause the pipeline to stall. There are three kinds. A struc-
tural hazard occurs when two instructions must use the same resource at the same time, as when
one instruction must be read from memory while the another also needs to read memory. A
data hazard occurs when and instruction needs the results of a previous instruction that is still
in the pipeline. Finally, branch hazards occur because then next instruction cannot be brought
into the pipeline until the branch address has been computed. There are various �xes for these
problems. But even the best planned pipelines stall from time to time.

Instruction pipelining is only one (very important) technique for designing fast computers. Com-
bining it with other techniques results in superscalar computers that can at times complete more
than one instruction per cycle.

|

Draft September 26, 2005

44 3. The CPU

3.3.1. Pipelining

We have mentioned (p. 37) that instructions in a CPU execute in stages, each stage

requiring one cycle. This suggests that once an instructions has left the �rst stage, an-

other instruction may begin executing and follow the �rst instruction one stage behind.

This process is called pipelining. In this section, we will show how instructions can be

pipelined on the MIPS computer. But �rst some words on pipelines in general.

The classic example of a pipeline is an assembly line in an automobile factory. The

assembly of the car is broken down into independent stages, each taking roughly the

same time, and each stage is assigned a position in the assembly line. As the car moves

from position to position, workers perform the tasks particular to their stage. At the

end the result is a fully assembled car. The beauty of the assembly line is that once a

car has moved from stage one to stage two another care can be started in stage one.

With cars following one another through the assembly line, they emerge at the rate

of one car in the time required to complete one stage, even though any individual car

requires n stages to complete, where n is the length of the assembly line.5

There is some terminology associated with pipelines. The number of stages in a

pipeline is called the length of the pipeline. The time it takes for an item to be appear

at the end of the pipeline, which is generally a multiple of the length, is called the

latency or startup time of the pipeline. The rate at which the pipeline produces its

results is called its bandwidth. In computer pipelines, latency is usually measured in

cycles.

A diÆculty with pipelines is that they must be kept well fed to achieve their peak

bandwidth. If the pipeline is not provided with input at one of its cycles, an empty

bubble passes through the pipe, producing no output at the end and hence reducing

the average bandwidth. A related diÆculty is that if one of the stages cannot �nish

on time, all the stages before it must wait until it �nishes. This situation is sometimes

called a stall.

3.3.2. The MIPS instruction pipeline

In describing the MIPS instruction pipeline, we will exclude
oating-point operations,

which will be treated in the next subsection. There are �ve stages in the execution of a

MIPS instruction.

1. Instruction fetch (IF): The instruction is fetched from memory and placed in

the instruction register (IR).

2. Instruction decode (ID): The bits of the instruction are decoded into control

signals. Operands are moved from registers or immediate �elds to working

5Although Henry Ford is usually regarded as the inventor of the assembly line, Ransom E. Olds (of

Oldsmobile fame) �rst introduced it in 1901, where it increased his production by sixfold.

G. W. Stewart Computer Science for Scienti�c Computing

3.3. Instruction pipelines 45

registers. For branch instructions, the branch condition is tested and the

branch address computed.

3. Execution (EX): The instruction is executed. Speci�cally, if the instruction is

an arithmetic or logical operation, its results are computed. If it a load-store

instruction, the address is computed. All this is done by an elaborate logic

circuit called the arithmetic-logical unit (ALU).

4. Memory read/write (ME): If the instruction is a load-store, the memory is

read or written.

5. Write back (WB): The results of the operation are written to the destination

register.

In the MIPS pipeline these instructions follow one another through the pipeline.

We can represent the procession of a sequence of instructions I1, I2, . . . through the

pipeline pictorially as follows.

cycle IF ID EX ME WB

1 I1

2 I2 I1

3 I3 I2 I1

4 I4 I3 I2 I1

5 I5 I4 I3 I2 I1

6 I6 I5 I4 I3 I2

� � � � � �

(3.4)

It takes �ve cycles to �ll the pipe, after which instructions complete at the rate of one

per cycle.

Although we cannot go into the details of how an instruction pipline is implemented,

it is useful to think of the pipline as consisting of logic circuits connecting internal

registers, as illustrated below.

IR Lif Rii Lid Rie Lex Rme Lwb Visible registers

The L's represent logic circuits and are subscripted by their stages. The R's represent

internal bu�er registers between the stages. The subscripts are formed from the �rst

letters of the stages they separate. At the right end, is an incoming instruction in the

instruction register and at the left are the visible registers where the results are to be

placed. At the beginning of the a cycle, the contents of the registers are allowed to
ow

through the logic circuits. After they have propagated through the circuit, they are

latched into the registers at the right of the stage. This process keeps the execution of

the instructions in order|no instruction can race ahead of another.

Draft September 26, 2005

46 3. The CPU

3.3.3. Impediments to instruction pipelining

In practice, certain impedements, called hazards, may keep pipelining from achieving

its full potential. Hazards may be divided into three types: structural hazards, data

hazards, and branch hazards.

Structural hazards occur when two instructions must use the same part of the

computer at the same time. For example, suppose that I1 in (3.4) is a load-store in-

struction. Then at cycle 4, I1 must access memory. But at the same time I4 has to

be fetched from memory. Unless the machine is organized so that instructions can be

fetched simultaneously with memory reads and writes, the entry of I4 into the pipeline

will have to be delayed or stalled for a cycle (or more, if, say, I2 is a load-store instruc-

tion). Since this kind of hazard will occur whenever a load-store instruction is executed,

it is not surprising that computers have a separate channel for fetching instructions.

Data hazards occur when data for needed by one instruction has not been com-

puted by a previous instruction. For example consider the sequence of instruction

DADD R1, R2, R3

DSUB R1, #10
(3.5)

Let's follow these two instructions through the pipeline (we abbreviate AD and SB for

DADD and DSUB).

cycle IF ID EX ME WB

1 AD

2 SB AD

3 XX SB AD

4 XX SB { AD

5 XX SB { { AD

6 XX SB { { {

7 XX XX SB { {

� � � � � �

At cycle 3, SU needs to move the contents of R1 to a working register as part of the

decoding process. But R1 does not contain the results of AD|and will not until AD

completes its WB stage. Thus the pipeline stalls with SB in the ID stage until AD

completes the WB, with a loss of three cycles.

A cure for this problem can be found in the fact that at the end of cycle 3, the result

of AD is about to be latched into a working register as its EX stage is completed. With

the help of some extra logic circuits the result can be delivered to the working register

that would ordinarily be loaded by SB from R1. This process that is called forwarding.

Now the pipeline proceeds with no stalls.

It must not be thought, however, that forwarding resolves all data hazards. Let's

change the DADD in (3.5) to a load.

G. W. Stewart Computer Science for Scienti�c Computing

3.3. Instruction pipelines 47

LD R1, 0(R2)

DSUB R1, #10

Then the pipeline behaves as follows.

cycle IF ID EX ME WB

1 LD

2 SB LD

3 XX SB LD

4 XX SB { LD

5 XX XX SB { LD

6 XX XX XX SB {

� � � � � �

The diÆculty here is that the ultimate contents of R1 are no longer available at the end

of the EX stage. Instead, we have to wait until the end of the ME stage to forward the

result of the load. This causes a stall of one cycle.

A possible cure for this problem is to �nd an instruction after DSUB and place it

between LW and DSUB, a process known as rescheduling. This instruction must not

use or alter R1. In more formal language we say there must be no data dependencies

between the instruction and LD and LSUB. Since most programs are not written in

assembly language, the determination of an appropriate instruction must be left to the

compiler. This illustrates an important point about machines with instruction pipes.

They need smart compilers.

Branch hazards occur because we do not know the status of the branch condition

and the branch address until the end of the ID stage. As the following diagram shows

this creates a stall. Here BR stands for the branch instruction and TG for the target

instruction at the address actually taken by the branch.

cycle IF ID EX ME WB

1 BR

2 { BR

3 TG { BR

4 XX TG { BR

5 XX XX TG { BR

6 XX XX XX TG {

� � � � � �

The cure for a branch hazard is to schedule an instruction to �ll the stall. There are

two ways of doing this: static and dynamic.

In static scheduling the compiler choses an instruction to fetch. Ideally, this instruc-

tion would be one that was independent of the branch. But if such an instruction does

Draft September 26, 2005

48 3. The CPU

not exist, the compiler can assume one of two things. First, it may assume that the

branch will not be taken and schedule the instruction following the branch. Second, in

may assume that the branch will be taken and schedule the target of the branch. If the

assumption about the branch turns out to be wrong, the scheduled instruction must be

cancelled, creating a stall.

In dynamic scheduling the CPU chooses the instruction to �ll the stall. The CPU

may use a �xed strategy. For example, assuming that backward branches will be taken

is a good strategy, since most loops end with a backward branch to the beginning of

the loop where an instruction is waiting to be executed. Or the CPU can try to predict

which way the branch will go on the basis of past history. Some aspects of branch

prediction are treated in connection with �nite-state automata (see x7.2.3).

|

Instruction pipelining is the basic technique for speeding up CPU's. But it is not

the only one. Parallel pipelines allow for the execution of more than one instruction

at a time. Dynamic scheduling and branch prediction can reduce branch stalls beyond

what a compiler can achieve. When these and other techniques are incorporated into

a CPU, the result is a superscalar computer that can, in some applications, achieve

execution rates faster than one instruction per cycle.

3.4. Floating-point pipelines

Synopsis: Floating-point operations can be pipelined, but it takes some care to realize any
bene�ts. Two commonly used tricks are loop unrolling and loop splitting.

Loop unrolling is illustrated by AXPY. In its natural form it cannot be pipelined because at
the ith stage of the loop the addition of yi in axi + yi must wait for the multiplication by
a to complete. Moreover, the yi cannot be overwritten by axi + yi. On the other hand the
computation of axi+yi, axi+1+yi+1, and axi+2+yi+2 are independent. Hence if we increment
our loop by three instead of one and properly reschedule the loads, multiplies, adds, and stores,
we can improve the pipelining.

Loop splitting is illustrated by illustrated by the problem of computing the sum x1+x2+� � �+xn.
If this is done is the usual way by accumulating the sum in a register, there will be no bene�ts
of pipelining. On the other hand if if we compute x1 + xn=2+1; : : : ; xn=2 + xn, the sums are
independent and their computation can be pipelined by loop unrolling. Applying this method
recursively computes the sum. However, the numerical properties of this algorithm are di�erent
from straightforward accumulation.

|

Floating-point arithmetic is a complicated a�air, and its operations tend to take

longer than other machine operations. Consequently, if
oating-point operations are

plentiful in an application,
oating-point arithmetic may dominate the calculations.

G. W. Stewart Computer Science for Scienti�c Computing

3.4. Floating-point pipelines 49

According to Amdahl's law, to speed up the computations we should start by speed-

ing up
oating point-arithmetic. One way of doing this is to pipeline
oating-point

operations.

The details of the stages of
oating-point pipelines need not concern us here. Instead,

in our discussion we will assume that
oating-point additions and multiplications can be

independently pipelined with a latency of three cycles, and that all other instructions

require one cycle to execute. Although these assumptions are an oversimpli�cation,

they are are near enough the mark not to mislead us about the qualitative behavior of

oating-point pipelines.

3.4.1. Loop unrolling

Let us return to the AXPY code in Figure 3.2, which we reproduce here with the number

of cycles required by each instruction.

1. Loop: L.D F1, 0(R1) ; 1

2. L.D F2, 0(R2) ; 1

3. MUL.D F1, F0, F1 ; 3

4. ADD.D F2, F2, F1 ; 3

5. S.D O(R2), F2 ; 1

6. DADDI R1, #8 ; 1

7. DADDI R2, #8 ; 1

8. DSUB R4, R1, R3 ; 1

9. BNZE R4, Loop ; 1

The total number of cycles is 13. Our
oating-point pipeline has not helped us at all!

The reason is �rst that the ADD.Dmust wait for 3 cycles for the MUL.D to complete and to

place its result in F2. Moreover, the S.D must wait for the ADD.D to complete|another

example of data dependency.

A cure for this dependency problem is to note that there is no data dependency

between the
oating point operations of di�erent iterations of the loop. Thus if we can

collect iterations together, we can �ll the pipeline. This commonly used process is called

loop unrolling. The number of iterations we combine is the unrolling factor. Here

is an example of a 3-fold unrolling of AXPY

for i = 1:3:n

y(i) = y(i) + a*x(i);

y(i+1) = y(i+1) + a*x(i+1);

y(i+2) = y(i+2) + a*x(i+2);

end

(3.6)

For simplicity we have assumed that n is is divisible by 3.

The corresponding MIPS code is contained in Figure 3.3. Note that the code is not

Draft September 26, 2005

50 3. The CPU

1. Loop: L.D F1, 0(R1)

2. L.D F2, 8(R1)

3. L.D F3, 16(R1)

4. L.D F4, 0(R2)

5. L.D F5, 8(R2)

6. L.D F6, 16(R2)

7. MUL.D F1, F0, F1

8. MUL.D F2, F0, F2

9. MUL.D F3, F0, F3

10. ADD.D F4, F1, F4

11. ADD.D F5, F2, F5

12. ADD.D F6, F3, F6

13. S.D O(R2), F4

14. S.D 8(R2), F5

15. S.D 16(R2), F6

16. DADDI R1, #24

17. DADDI R2, #24

18. DSUB R4, R1, R3

19. BNZE R4, Loop

Figure 3.3: AXPY loop unrolled

the literal equivalent of (3.6), since the assembly language instruction are not in their

natural order. This instruction rescheduling is necessary to get the bene�ts of loop

unroling.

To count the number of cycles this loop takes, note that the L.D's take 6 cycles. We

must then issue 3 MUL.D's requiring 3 cycles. Because the latency of the MUL.D pipeline

is three, after the MUL.D's have been issued, the �rst product is available to fed into the

ADD.D pipeline. Three cycles later we can begin executing the 3 stores followed by the

4 loop control instructions. Thus we have a total of

6 L:D+ 3 MUL:D+ 3 ADD:D+ 3 S:D+ 4 loop = 19 cycles:

Since each iteration of this loop is equivalent to three iterations of the original loop, we

divide by 3 to get a e�ective loop cycle count of 61
3
cycles. Thus unrolling the loop has

reduced the original count of 13 by a factor of about 2.

It is instructive to ask what happens when we increase the unrolling factor to k,

where k > 3. Reasoning as above, we �nd that our cycle count is

2k L:D+ k MUL:D+ k ADD:D+ k S:D+ 4 loop = 5k + 4

G. W. Stewart Computer Science for Scienti�c Computing

3.4. Floating-point pipelines 51

cycles. Dividing by k we get an e�ective count of

5 +
4

k

cycles.

In this count we recognize the Amdahl hyperbola. The best count we can get is 5,

and when k = 3 we are quite near it. Increasing k to �ve gives a count of 5:8, which is

not much improvement over 6:3.

Amdahl's law is not the only reason for limiting the degree of unrolling. Unrolling

consumes registers. In the AXPY example it requires 2k+1 registers to unroll the loop

by a factor of k. On the MIPS, which has 32
oating-point registers, k is e�ectively

limited to 15.

It is also instructive to ask what happens when k � 3. In this case the sum is

2k L:D+ 3 MUL:D+ 3 ADD:D+ k S:D+ 4 loop = 3k + 10:

The counts for MULTD and ADDD change from k to 3 because we must wait for the results

to get through the
oating-point pipeline. The average count is

3 +
10

k
:

Once again we have an Amdahl hyperbola. But because k is small and the multipier

of k�1 is large we get a lot of bang for our bucks|passing from 13 to 8 to 6.3 for

k = 1; 2; 3. The common sense of all this is that for k � 3 we gain both by using the

pipeline more eÆciently (6=k) and by reducing the average loop overhead (4=k). For

k > 3 we only reduce the average loop overhead, which is already small for k = 3.

To simplify our exposition, we assumed that n was divisible by k = 3. When it is

not, we must add a loop to take care of the part left out. Thus in general we modify

(3.6) to read

m = rem(n, 3);

for i=1:m

y(i) = y(i) + a*x(i);

end

for i = m+1:3:n

y(i) = y(i) + a*x(i);

y(i+1) = y(i+1) + a*x(i+1);

y(i+2) = y(i+2) + a*x(i+2);

end

(3.7)

Actually with aggressive optimizing compilers it is not necessary to write unrolled code

like (3.7). They will automatically unroll loops and reschedule the resulting instructions

in the optimization process.

Draft September 26, 2005

52 3. The CPU

3.4.2. Loop splitting

We now turn to another vector operation|the dot product of two vectors de�ned by

xTy =
P

n

i=1
xiyi. Sums like this are diÆcult to pipeline. The see why, let us consider

the simpler problem of computing

sum =

nX
i=1

xi:

The natural code for this computation is

sum = 0;

for i = 1:n

sum = sum + x(i)

end

(3.8)

Now consider the �rst two iterations of the loop.

sum(2) = sum(1) + x(1);

sum(3) = sum(2) + x(2);

We have indexed sum to distinguish its values at di�erent iterations of the loop. We can

only compute sum(2) after sum(1) has been computed. But that computation requires

three cycles| the length of the
oating-point pipeline. Similarly, we can only compute

sum(3) after sum(2) has been computed, which causes another three cycle delay|and

so on. The result is that the pipeline is never �lled.

To solve this problem, we must radically rearrange our algorithm by a process called

loop splitting. To keep things simple we will consider the problem of summing the

elements of a vector x. We will also assume that the dimension n of x is 2m. The idea

is to divide the vector x into two vectors of dimension 2m�1:

x =

�
x0

x00

�
:

We then calculate y = x0 + x00. We now repeat the same procedure on y and continue

until we are left with a scalar, which is the desired sum.

To see that this works, consider the case m = 3. We �rst compute0
BB@
x1
x2
x3
x4

1
CCA+

0
BB@
x5
x6
x7
x8

1
CCA =

0
BB@
x1 + x5
x2 + x6
x3 + x7
x4 + x8

1
CCA :

Next we compute�
x1 + x5
x2 + x6

�
+

�
x3 + x7
x4 + x8

�
=

�
x1 + x5 + x3 + x7
x2 + x6 + x4 + x8

�
:

G. W. Stewart Computer Science for Scienti�c Computing

3.5. Vector processors 53

Finally we compute

�
x1 + x5 + x3 + x7

�
+
�
x2 + x6 + x4 + x8

�
= x1+ x5+ x3+ x7+ x2+ x6+ x4+ x8;

which is the desired sum.

Here is the code implementing this process.

p = n;

while p~=1

p = p/2;

for i=1:p

x(i) = x(i) + x(i+p);

end

end

sum = x(1);

(3.9)

The sums in the body of the inner loop are independent of one another, and therefore

the inner loop can be unrolled and the additions pipelined. When n is not a power of

two, there is a simple variant of (3.9) that does the job|see Exercise 5.

This algorithm has an operation count of approximately n additions, just as does the

usual algorithm. However, its numerical properties are quite di�erent|rounding error

has less e�ect on the revised algorithm. Since compilers are not supposed to change the

numerics of an algorithm without permission, loop splitting is not commonly used as a

compiler optimization technique.

Finally, we note that the algorithm (3.9) access the elements of x sequentially. This,

as we will see in x????, insures good cache performance.

3.5. Vector processors

Synopsis: A cure for the diÆculty in pipelining
oating-point operations is to work with
collections of
oating-point numbers as if they were vectors. The result is a vector computer,

which has a number of vector registers consisting of, for example, sixty four scalar registers
each. These vectors registers, can be loaded, stored, and combined by arithmetic and logical
operations. Because, the operations on the components of the registers are independent, they
can be pipelined, performed in parallel, or some combination of the two. To get more speed,
some vector operations can be performed in parallel. Moreover, by a process called chaining,
the results of one vector operation can be fed to another vector operation. The result is very
eÆcient
oating point computations.

When the actual vectors have more than 64 components, the computation can be broken up into
subvectors with 64 components or less. Conditional execution allows operations to be performed
on a subset of the components.

In some cases the components of a vector are not contiguous in memory. This can happen in two
ways. First, they may be equally spaced in memory (the distance in memory between them is
called their stride). In this case, and instruction to retrieve a vector requires only a base address

Draft September 26, 2005

54 3. The CPU

and a stride. Second, they may be stored irregularly in memory. In this case the instruction
requires a pointer to a vector of addresses of the desired components. Loading such a vector is
called a gather operations; storing, a scatter.

|

3.5.1. Vector processors

We have seen in the last subsection that it is not easy to use a
oating-point pipeline

to implement operations on vectors. The problem is that is that MIPS and its relatives

are scalar processors, and hence vector operations must be implemented as sequences

of scalar operations. When these operations are performed in their natural order, they

do not pipeline well.

A cure for this problem is to create a processor with instructions that manipulate

vectors. This is feasible because the number of commonly used vector operations is

small. It solves the pipelining problem because the hardware can be optimized to per-

form these operations eÆciently. Computers that operate on vectors are called vector

processors or vector computers.

Vector processors appeared in the early 1970's. The �rst ones were memory-memory

architectures. Vectors in main memory were streamed into the processor and the results

streamed back into memory. It was soon discovered that a load-store architecture using

vector registers gave better results. Today's vector computers are all register oriented,

and that is the kind we will treat in this subsection. The technical details of how vector

operations are implemented on a vector processor are beyond the scope of this book,

and we will restrict ourselves to describing the general features of vector processors.

A vector register consists of a number of scalar registers containing the components

of the vectors, which may be single precision, double-precision, or integer. Depending

on the machine the number of components in a vector register ranges from 64 to as

many 4096. The number of vector registers ranges from 8 to 256.

The vector operations are performed by vector function units. The operations

typically consist of vector addition, componentwise vector multiplication and division,

and logical operations. Surprisingly, most vector processors do not have a dot product,

and this lack can be a bottleneck in some applications (e.g., the method of conjugate

gradients).

The componentwise additions that compose, say, a vector addition can be performed

in parallel. But that would require as many scalar arithmetic units as there are com-

ponents in a vector register, which is too costly. Instead, the arithmetic units exploit

some combination of pipelining and parallelism. The fact that pipelining is involved

means that vector operations have a latency or start up time. The fact that parallelism

is involved means that once the pipeline is full, results can be generated at more than

G. W. Stewart Computer Science for Scienti�c Computing

3.5. Vector processors 55

one component per clock cycle. But this gain in speed will be of little account if it is

swallowed by the latency of the pipeline, which should be kept as small as possible.

In addition to arithmetic units, a vector processor have load-store units to communi-

cate with memory. The success of a vector processor depends critically on how well they

do the job. As we shall see later, many problems generate vectors that do not reside in

a contiguous block of memory. Memory references that leap around in memory do not

work well with cache memory, and consequently most vector processor communicate

with a system of memory banks, which will be treated in x4.1.

A good vector processor also has to be a good scalar processor. In many applica-

tions scalar operations contribute a signi�cant part of the computational overhead. By

Amdahl's law speeding up the vector part without speeding up the scalar part will have

diminishing impact on the overall speed of the vector computer.

3.5.2. AXPY on a vector processor

To see what AXPY looks like on a vector processor, we will use and extension of the

MIPS computer devised by Hennessy an Paterson to illustrate vector computation. The

VMIPS, as it is called, is a MIPS computer extended by eight vector registers V0,. . . ,V7

each holding 64 double words. The vector registers can hold integers and
oating-point

numbers. The registers are connected to functional units, which implement addition,

multiplication, division, and integer and logical operation. They can run in parallel. A

vector load-store unit communicates with main memory.

In implementing the AXPY we will assume that a is in F0 and the starting addresses

of x and y are in R2 and R3. Here is the AXPY code

1. LV V1, 0(R2) ; load x

2. MULVS.D V2, V1, F0 ; a*x

3. LV V3, 0(R3) ; get y

4. ADDV.D V4, V2, V3 ; a*x + y

5. SV 0(R3), V4 ; store y

The notation should be clear. LV and SV load and store vectors. MULVS.D multiplies a

vector by a scalar, and ADDV.D adds two vectors.

It is not easy to predict how this loop will perform. To make a start let's assume

that all the operations produce results at the rate of one component per cycle after

a common startup time of � cycles. There are �ve vector instructions. If they are

executed strictly in sequence the total time is 5(�+ 64) = 5�+ 320.

However, vector computers are aggressive about exploiting overlaps in computation.

For example, since there are no data dependencies between the MULVS.D and the second

LV, once the �rst LV has completed, we can run the MULVS.D and the second LV in

Draft September 26, 2005

56 3. The CPU

4λ + 128

3λ + 128

2λ + 128

2λ + 64

λ + 64

SV

ADDV

LV

MULVS

LV

Figure 3.4: Chaining AXPY

parallel|provided the proper connections and control are available. In this case the

time is reduced to 4(�+ 64) = 4�+ 256.

Further reduction in time can be e�ected by directing the output of one instruction

directly into another. This practice is called chaining. For example, the output from

the �rst LV can be fed directly into the MULVS.D. The combined instructions �nish at

time 2�+ 64.

Actually, the AXPY operation can be extensively chained, as is shown in Figure 3.4.

The line following each instruction represents the period during which the instruction

is executed. The tick in the line separates the startup period from the period of actual

calculation. The formula at the end shows when the instruction completes. There are

two chains in this calculation: the �rst LV! MULVS:D and the second LV! ADDV:D! SV.

Note that the second chain cannot start until the �rst LV has �nished, since VMIPS has

only one load-store unit. The last instruction completes at 4� + 128. This is quite an

improvement over our original 5�+ 320.

This example shows the importance of keeping latency down, since 4� can quickly

approach 128. If, for example, � = 16 then 4� = 64, which is one third the total

computation time of 4�+ 128 = 192.

3.5.3. Four problems

We now consider brie
y four problems associated with vector processing and possible

solutions.

1. What do you do when the vector size is less than 64?

2. What do you do when the vector size is greater than 64?

3. What do you do when an operation is to be performed on a subset of the

components (aka conditional execution)?

G. W. Stewart Computer Science for Scienti�c Computing

3.5. Vector processors 57

4. What do you do when the components of a vector are not contiguous in mem-

ory?

3.5.4. Under and oversized vectors

The problem of undersized vectors is easily disposed of. The processor is provided with

a programmable register that speci�es the vector length, which, of course, must not be

greater than the capacity of a vector register. If the value of this register is N , then

only the �rst N components are processed by the arithmetic and load-store units.

Short vectors are processed faster than full vectors, but the latency of the arithmetic

unit remains the same. As the vector becomes smaller a point will be reached in which

it is faster to perform the operation in scalar mode. The vector size for which this

happens is often written Nv.

When the vector size exceeds the register size, operations must be broken up into

units that will �t into the vector registers. This must be done in software either by

hand or by a vectorizing compiler. The following Matlab code illustrates the process

for AXPY assuming 64 component registers.

m = rem(n, 64);

y(1:m) = y(1:m) + a*x(1:m)

for i = m+1:64:n

j = i+64-1

y(i:j) = y(i:j) + a*x(i:j)

end

Depending on the machine, it may be desirable to unroll the loop to take advantage of

parallelism in the vector operations and load-stores.

3.5.5. Conditional execution

To illustrate the problem of conditional execution, consider the problem of computing

the absolute value of the components of a vector x. This can be done as follows.

for i=1:64

if x(i) < 0

x(i) = -x(i);

end

end

(3.10)

This calculation can be vectorized by introducing a vector mask register (VM) of 64

bits. For any vector operation if the ith bit of VM is zero, no result is stored for the ith

component of the result; otherwise, the operation is performed and the result stored.

Draft September 26, 2005

58 3. The CPU

VMIPS has a VM and instructions to manipulate it. Let's see how they they can

be used to implement (3.10). We will assume that scalar register F0 contains zero and

F1 contains �1.

1. LV V1, x ; load x

2. SVLTS V1, F0 ; VM(i) = 1 <==> x(i) < 0

3. MULVS.D V1, V1, F1 ; x(i) = -x(i) <==> VM(i) == 1

4. CVM ; VM(1:64) = 1

5. SV x, V1 ; Store x

After loading x, the code uses the instruction SVLTS (Set Vector mask Less Than Scalar)

to create a bit mask in VM that corresponds to the negative components of x. This is one

of several vector compare instructions that set the VM. In the subsequent multiplication,

the results are stored back only for those components which were originally negative.

The CVM restores the VM to its default status of all ones. This is necessary so that the

subsequent SV will store all the components of V1.

In a masked operation, the operation for an component with its VM bit zero may or

may not be performed, depending on the machine. But in any event no result is stored.

The execution of a masked operation for a component may be harmful if it causes and

exception, such as over
ow or divide by zero.

3.5.6. Vectors with a stride

The �nal problem concerns vectors that are not stored contiguously in memory. Because

vector operations are performed in registers the real problem is how to move the vectors

to and from memory. The solution depends on the regularity of the storage pattern.

In many cases, the components of a vector appear at equal intervals in memory. To

see how this comes about consider the 5 by 4 C array de�ned by

double A[5][4]

The C language standard speci�es that rectangular arrays be stored rowwise. Figure 3.5

shows how the array is stored beginning with address a. The reason for the increments

of eight is that a double-precision number requires eight bytes to store.

If we pass through the array row by row, successive words are next to each other

in memory, and we say that the references have a stride of one word. On the other

hand, if we pass down a column successive words are four words from each other and

we say that the references have a stride of four words. Some confusion can arise from

not specifying the unit of the stride. For example, we could equally well say that the

stride along a row is eight bytes, while down a column it is 32 bytes.

VMIPS has an instruction

LVWS V1, (R1,R2)

G. W. Stewart Computer Science for Scienti�c Computing

3.5. Vector processors 59

a a + 8 a + 16 a + 24

A[0][0] A[0][1] A[0][2] A[0][3]

a + 32 a + 40 a + 48 a + 56

A[1][0] A[1][1] A[1][2] A[1][3]

a + 64 a + 72 a + 80 a + 88

A[2][0] A[2][1] A[2][2] A[2][3]

a + 96 a + 104 a + 112 a + 120

A[3][0] A[3][1] A[3][2] A[3][3]

a + 128 a + 136 a + 144 a + 152

A[4][0] A[4][1] A[4][2] A[4][3]

Figure 3.5: Row-major storage of an array

that loads the vector register V1 beginning with the address in R1 and stride (in bytes)

in R2. A corresponding instruction

SVWS (R1,R2), V1

stores a register with stride.

3.5.7. Scatter-gather operations

In some applications the components of a vector are stored irregularly. Their addresses

can be speci�ed by a vector of o�sets from a base address. For example, suppose the

maximum components of the columns of A in (3.5) occur at A(2,1), A(5,2), A(3,3),

A(1,4) and we want to form a vector of these components (as, for example, a preliminary

to scaling the columns of A so that their largest component is one). Then the base

address would be a and the o�set vector would be

(32 136 80 24):

VMIPS has an instruction

LVI V1, (R1+V2)

that loads V1 with a vector whose base address is in R1 and whose o�set vector is

in V2. In the parlance of vector computing, this operation is called a scatter. The

corresponding store

Draft September 26, 2005

60 3. The CPU

SVI (R1+V2), V1

is called a gather.

|

This completes our treatment of vector computers. They were once the cr�eme de

la cr�eme of supercomputers, but today they are in partial eclipse. There are several

reasons. They are expensive to build, owing to the large amount of hardware required

for vector registers and units and the need for superfast memory to feed them. They are

not always easy to use, since vectorizing compilers sometimes produce less than optimal

results. Their performance is being challenged by much cheaper superscalar computers,

at least in some applications. Finally, applications having coarse parallelism can be

speeded up by spreading them out over networks of superscalar computers. On the

other hand, cache-oriented, scalar computers cannot compete with vector computers in

applications that require nonunit strides and scatter/gather operations. For this reason,

if no other, we can expect vector computers to be around for some time to come.

Exercises

1. Among the things that a�ect the performance of a computer are the clock rate (CR), the
number of cycles it requires to execute a typical instruction (CPI) that does not access memory,
the average number of cycles required to satisfy a memory reference (CPM), and the fraction of
instructions that make memory memory references (FM).

1. Assuming that the number average number of cycles to complete a memory reference
instruction is CPI + CPM and that CR is measured in hertz, develop a formula for
the average number of instructions executed in a second.

2. What does this suggest that you do as a programmer to speed things up.

3. Give a critical assessment of this model.

2. The implementation of AXPY in Figure 3.2 uses two registers R1 and R2 to address x(i) and
y(i), both of which must be updated with each iteration of the loop. Show that if the distance
between the addresses x(1) and y(1) is less than 215, we can get rid of R2.

3. The purpose of this problem is to compare load-store architecture with accumulator archi-
tecture in evaluating the cubic polynomial

p = ax3 + bx2 + cx+ d = ((ax + b)x+ c)x+ d;

using the nested form on the right. The accumulator machine has four instructions (here a is
an address in memory)

LDA a ; loads the accumulator from a

STO a ; stores the accumulator to a

MPY a ; multiplies the acculator by the contents of a

ADD a ; adds the contents of a to the accumulator.

G. W. Stewart Computer Science for Scienti�c Computing

3.5. Vector processors 61

Write accumulator and MIPS code to compute p. How many instructions are executed by each
program? Assume that a memory reference executes in 2 cycles while an arithmetic operations
executes in 1 cycle (so that for the accumulator machine LDA and STO run in 2 cycles while MPY
and ADD require 3). Count the cycles for both programs. Comment on the results.

4. Show that moving a single instruction in the AXPY program in Figure 3.2 we can reduce the
cycle count from 13 to 12.

5. The algorithm (3.9) for computing the sum of the components of a vector does not work when
the dimension n of the vector is not a power of two. The problem can be cured by noting that a
vector of even dimension can be divided into two equal parts, while a vector of odd dimension
can be divided into two equal parts with one component left over, which can be added into an
element of the equal vectors. Give Matlab code for

function sum = splitsum(x)

implementing this idea. [Hint: You will �nd the functions bitshift and bitand useful.]

Draft September 26, 2005

