Lecture 9

Vector Instructions
SSE Instructions

Instruction Level Parallelism

» Last class
— Introduction to computer instructions
— Instruction scheduling to avoid problems
— Axpy loop unrolling
* This class
— Further loops

— Vector instructions
— SIMD and SSE

Loop splitting

Summing a vector
sum = 0;
fori=1:n
sum = sum + X(i)
end
Now consider the first two iterations of the loop.
— sum(2) = sum(1) + x(1);
— sum(3) = sum(2) + X(2);
Can only compute sum(2) after sum(1) has been computed.
— But that computation requires three cycles
— can only compute sum(3) after sum(2) causing another 3 cycle delay
pipeline is never filled.
Need to rearrange the loop using loop splitting.
Explain splitting for the case that the dimension n of x is 2™,

Partitioned sums

« Split sum: divide vector x into two 2™ vectors x’
and x”

« Sumthemy=x + X’

« Calculate (using the same procedure) the sum of
y by splitting it

. Repeat the same procedure, until we are left P = I/
with a scalar while p~=1
« This is the desired sum. p = p/2;
* lllustration for m=3 for i=1:p
X(1)=x(1)+x(1+p) ;
T xTr Sl end
9 + Te | | T2+ T end
T €T Ty + &7 sum = x(1);
€ €Ty €Ty + Iy

T+ I5 n r3+T7\ [T+ T5 T3+ I7
Tro -+ Iqg I el To + g + T4 + T8

(:Ifl + 5 + @19 + :I?,—) -+ (:I?E + &g+ a1q + :jf.';.;) =T t+ax5 +arsg+ a7 +ao+ g+ g+ Ty,

Properties

Since quantities are independent, no pipeline issues
— Loop can now be unrolled

Memory locality is good, as contiguous elements are added in
different parts of the loop

Number of operations are the same (n additions)

However, turns out numerical properties may also be good

— Addition of like sized floats, leading to better preservation of significant
bits

Also can be used on parallel machines

Vector processors

Also called array processor

Instruction set includes mathematical operations on multiple
data elements simultaneously.

In contrast reqular chips which handles one element at a time
are called scalar processors

Vector processors were common in the supercomputers of
the 1980s and into the 1990s, especially Crays

General increases in performance and processor design saw
the near-disappearance of the vector processor as a general-
purpose CPU.

Today, most commodity CPU designs include single
instructions for some vector processing on multiple
(vectorised) data sets, typically known

as SIMD (Singlelnstruction, Multiple Data),

Common examples in current architectures include
Streaming SIMD Extensions (SSE) and Advanced Vector
Extensions (AVX) instructions in current x86 processors

Vector processors

Operations on vectors can lead to ppor performance in the floating-point
pipeline of a scalar processor

— Vector operations must be implemented as sequences of scalar operations

— Wh”en operations are performed in their natural order, they do not pipeline
we

— Hard job for compiler or programmer to reorder operations

Solution: create processor with instructions and registers suitable for
vectors

Feasible because number of commonly used vector operations are
small.
Vector register = number of scalar registers for vector components
— may be single precision, double-precision, or integer.
— number of components in a vector register ranges from 64 to as many 4096.
— number of vector registers ranges from 8 to 256.

IOpera’uons addition, componentwise multiplication and division, and
ogicals

Efficiency via combination of two techniques

— Pipelining

— SIMD Parallelism

Pipelining means that vector operations have a latency or start up time.

Parallelism means that once the pipeline is full, results can be generated
at more than one component per clock cycle.

AXPY on a vector processor

In implementing the AXPY we will assume that ais in FO
and the starting addresses of x and y are in R2 and RS3.

1. LV V1, O0(R2) ; load x
2. MULVS.D V2, V1, FO ; a*x

3. LV V3, 0(R3) ; get vy
4. ADDV.D V4, V2, V3 ; arx + vy
5. SV 0(R3), V4 ; store y

LV and SV load and store vectors.
MULVS.D multiplies a vector by a scalar,
ADDV.D adds two vectors.

Loop performance

— Assume all operations produce results at the rate of one
component per cycle

— After common startup time of A cycles.
— There are five vector instructions.
— For sequential execution total time is 5(A + 64) = 5 A + 320.

Improving vector AXPY via overlaps and
chained execution

Exploit overlaps in computation.
— no data dependencies between the MULVS.D and the second LV,
— once first LV has completed, we can run the MULVS.D and the second LV in parallel
— timeis reduced to 4(A + 64) = 4 A\ + 256.

Further reduction in time by directing output of one instruction directly into another.
— called chaining.
— Output from first LV can be fed directly into the MULVS.D.
— The combined instructions finish at time 2 A + 64.

AXPY can be extensively v |

chained | 64

ggkcﬁfaa%rﬁ.tes startup from MULVS :

There are two chains in AXPY

first LV -> MULVS:D and the " .
second LV -> ADDV:D -> SV.

Second chain cannot start until | I+ 128
the first LV has finished if 7

only one load-store unit. SV |
Last instruction completes at

4 \ + 128.

An improvement over Figure 3.4: Chaining AXPY
original 5 A + 320.

2h+ 128

4L+ 128

Streaming SIMD Extensions

Streaming SIMD defines a new architecture for floating
point operations

Introduced in Pentium Ill in March 1999

— Pentium lll includes floating point, MMX technology, and XMM
reqgisters

Use eight new 128-bit wide general-purpose registers
(XMMO - XMM?7)

Operate on IEEE-754 single-precision 32-bit real
numbers

Support packed and scalar operations on the new
packed single precision floating point data types

SIX iterations and extensions
Can significantly speed up code

