
Lecture 9

Vector Instructions

SSE Instructions

Instruction Level Parallelism

• Last class

– Introduction to computer instructions

– Instruction scheduling to avoid problems

– Axpy loop unrolling

• This class

– Further loops

– Vector instructions

– SIMD and SSE

Loop splitting
• Summing a vector

sum = 0;

for i = 1:n

sum = sum + x(i)

end

• Now consider the first two iterations of the loop.
– sum(2) = sum(1) + x(1);

– sum(3) = sum(2) + x(2);

• Can only compute sum(2) after sum(1) has been computed.
– But that computation requires three cycles

– can only compute sum(3) after sum(2) causing another 3 cycle delay

• pipeline is never filled.
• Need to rearrange the loop using loop splitting.
• Explain splitting for the case that the dimension n of x is 2m.

Partitioned sums

p = n;

while p~=1

p = p/2;

for i=1:p

x(i)=x(i)+x(i+p);

end

end

sum = x(1);

• Split sum: divide vector x into two 2m-1 vectors x’
and x”

• Sum them y= x’ + x”

• Calculate (using the same procedure) the sum of
y by splitting it

• Repeat the same procedure, until we are left
with a scalar

• This is the desired sum.

• Illustration for m=3

Properties
• Since quantities are independent, no pipeline issues

– Loop can now be unrolled

• Memory locality is good, as contiguous elements are added in
different parts of the loop

• Number of operations are the same (n additions)

• However, turns out numerical properties may also be good

– Addition of like sized floats, leading to better preservation of significant
bits

• Also can be used on parallel machines

Vector processors
• Also called array processor
• Instruction set includes mathematical operations on multiple

data elements simultaneously.

• In contrast regular chips which handles one element at a time
are called scalar processors

• Vector processors were common in the supercomputers of
the 1980s and into the 1990s, especially Crays

• General increases in performance and processor design saw
the near-disappearance of the vector processor as a general-
purpose CPU.

• Today, most commodity CPU designs include single
instructions for some vector processing on multiple
(vectorised) data sets, typically known
as SIMD (SingleInstruction, Multiple Data),

• Common examples in current architectures include
Streaming SIMD Extensions (SSE) and Advanced Vector
Extensions (AVX) instructions in current x86 processors

Vector processors
• Operations on vectors can lead to ppor performance in the floating-point

pipeline of a scalar processor
– Vector operations must be implemented as sequences of scalar operations

– When operations are performed in their natural order, they do not pipeline
well

– Hard job for compiler or programmer to reorder operations

• Solution: create processor with instructions and registers suitable for
vectors

• Feasible because number of commonly used vector operations are
small.

• Vector register = number of scalar registers for vector components
– may be single precision, double-precision, or integer.

– number of components in a vector register ranges from 64 to as many 4096.

– number of vector registers ranges from 8 to 256.

• Operations: addition, componentwise multiplication and division, and
logicals.

• Efficiency via combination of two techniques
– Pipelining

– SIMD Parallelism

• Pipelining means that vector operations have a latency or start up time.
• Parallelism means that once the pipeline is full, results can be generated

at more than one component per clock cycle.

AXPY on a vector processor
• In implementing the AXPY we will assume that a is in F0

and the starting addresses of x and y are in R2 and R3.
1. LV V1, 0(R2) ; load x

2. MULVS.D V2, V1, F0 ; a*x

3. LV V3, 0(R3) ; get y

4. ADDV.D V4, V2, V3 ; a*x + y

5. SV 0(R3), V4 ; store y

• LV and SV load and store vectors.

• MULVS.D multiplies a vector by a scalar,

• ADDV.D adds two vectors.

• Loop performance
– Assume all operations produce results at the rate of one

component per cycle

– After common startup time of λ cycles.

– There are five vector instructions.

– For sequential execution total time is 5(λ + 64) = 5 λ + 320.

Improving vector AXPY via overlaps and
chained execution

• Exploit overlaps in computation.

– no data dependencies between the MULVS.D and the second LV,

– once first LV has completed, we can run the MULVS.D and the second LV in parallel

– time is reduced to 4(λ + 64) = 4 λ + 256.

• Further reduction in time by directing output of one instruction directly into another.

– called chaining.

– Output from first LV can be fed directly into the MULVS.D.

– The combined instructions finish at time 2 λ + 64.

• AXPY can be extensively
chained

• tick separates startup from
calculation.

• There are two chains in AXPY

• first LV -> MULVS:D and the
second LV -> ADDV:D -> SV.

• Second chain cannot start until
the first LV has finished if
only one load-store unit.

• Last instruction completes at
4 λ + 128.

• An improvement over
original 5 λ + 320.

Streaming SIMD Extensions

• Streaming SIMD defines a new architecture for floating
point operations

• Introduced in Pentium III in March 1999

– Pentium III includes floating point, MMX technology, and XMM
registers

• Use eight new 128-bit wide general-purpose registers

(XMM0 - XMM7)

• Operate on IEEE-754 single-precision 32-bit real

numbers

• Support packed and scalar operations on the new

packed single precision floating point data types

• SIX iterations and extensions

• Can significantly speed up code

