
Evidence from Behavior

LBSC 796/INFM 719R
Douglas W. Oard
Session 7, March 16, 2011

Agenda

- Relevance feedback
 - Blind relevance feedback
- "Collaborative" recommendation
- Implicit Feedback
- Query log analysis

Picture of Relevance Feedback

Rocchio Formula

$$\vec{q}_{m} = \alpha \vec{q}_{0} + \beta \frac{1}{|D_{r}|} \sum_{\vec{d}_{j} \in D_{r}} \vec{d}_{j} - \gamma \frac{1}{|D_{nr}|} \sum_{\vec{d}_{j} \in D_{nr}} \vec{d}_{j}$$

 q_m = modified query vector;

 q_0 = original query vector;

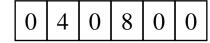
 α,β,γ : weights (hand-chosen or set empirically);

 D_r = set of known relevant doc vectors;

 D_{nr} = set of known irrelevant doc vectors

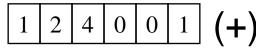
Rocchio Example

query vector = α · original query vector


 $+\beta$ · positive feedback vector

 $-\gamma$ · negative feedback vector

Typically, $\gamma < \beta$


Original query

 $\alpha = 1.0$

Positive Feedback

 $\beta = 0.5$

Negative feedback

 $\gamma = 0.25$

New query

Motivations to Provide Ratings

- Self-interest
 - Use the ratings to improve system's user model
- Economic benefit
 - If a <u>market</u> for ratings is created
- Altruism

"Blind" Relevance Feedback

- Perform an initial search
- Identify new terms strongly associated with top results
 - Chi-squared
 - IDF
- Expand (and possibly reweight) the query

Rating-Based Recommendation

- Use <u>ratings</u> as to describe objects
 - Personal recommendations, peer review, ...

- Beyond topicality:
 - Accuracy, coherence, depth, novelty, style, ...

- Has been applied to many modalities
 - Books, Usenet news, movies, music, jokes, beer, ...

Using Positive Information

	Small World	Space Mtn	Mad Tea Pty	Dumbo	Speed- way	Cntry Bear
Joe	(D	A	В	D	?	?
Ellen	A	F	D		F	
Mickey	A	A	A	A	A	A
Goofy	D	A		C		
John	A	C	A	C		A
Ben	F	A				F
Nathan	D		A		A	

Using Negative Information

	Small World	Space Mtn	Mad Tea Pty	Dumbo	Speed- way	Cntry Bear
Joe	Q	A	B	D	?	?
Ellen	A	F	D		F	
Mickey	A	A	A	A	A	A
Goofy	D	A		C		
John	A	C	A	C		A
Ben	F	A				F
Nathan	D		A		A	

Source: Jon Herlocker, SIGIR 1999

Hybrid Systems

- Start with a query
 - Avoids the "cold start" problem
- Obtain some feedback
 - Possibly using "active learning"
- Use the feedback to find other context
 - User-item
 - Item-item

Explicit Feedback: Assumptions

• A1: User has sufficient knowledge for a reasonable initial query

• A2: Selected examples are representative

• A3: The user will give feedback

A1: Good Initial Query?

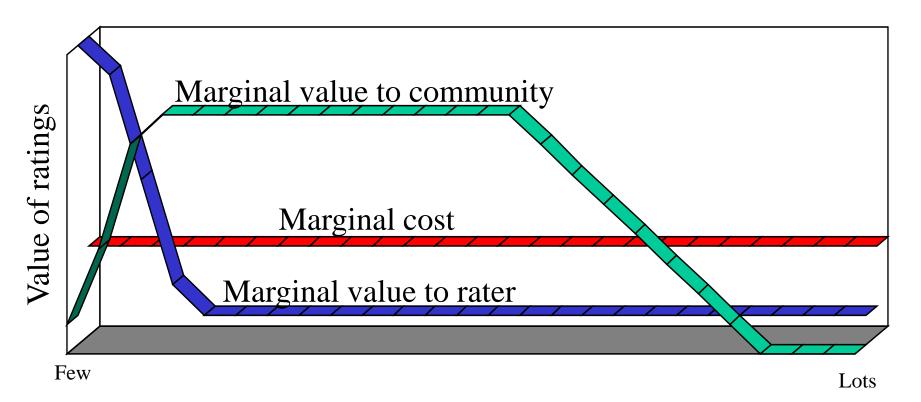
• Two problems:

- User may not have sufficient initial knowledge
- Few or no relevant documents may be retrieved

• Examples:

- Misspellings (Brittany Speers)
- Cross-language information retrieval
- Vocabulary mismatch (e.g., cosmonaut/astronaut)

A2: Representative Examples?

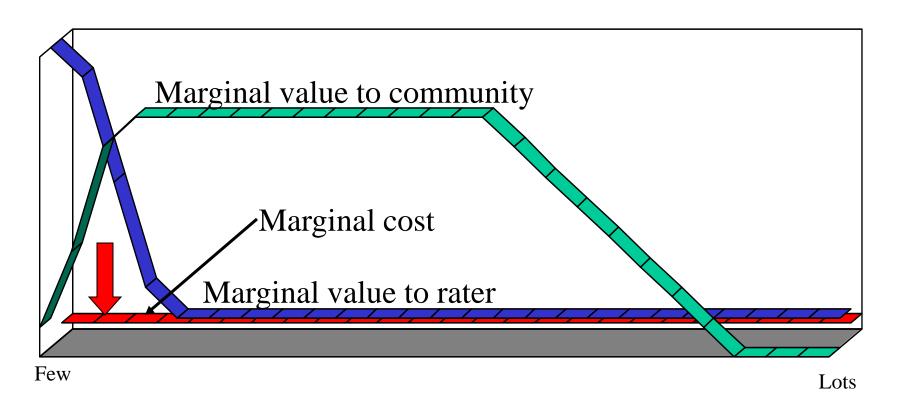

There may be several clusters of relevant documents

- Examples:
 - Burma/Myanmar
 - Contradictory government policies
 - Opinions

A3: Will People Use It?

- Efficiency
 - Longer queries require more processing time
- Understandability
 - Harder to see why subsequent documents retrieved
- Risk
 - Users are reluctant to provide negative feedback

Self-Interest Decreases Over Time


Number of Ratings

Solving the Cost vs. Value Problem

- Maximize the value
 - Provide for continuous user model adaptation

- Minimize the costs
 - Use implicit feedback rather than explicit ratings
 - Minimize privacy concerns through encryption
 - Build an efficient scalable architecture
 - Limit the scope to noncompetitive activities

Solution: Reduce the Marginal Cost

Number of Ratings

View Select

Listen

Print Bookmark

Save

Purchase Subscribe

Delete

Copy / paste Forward

Quote Reply

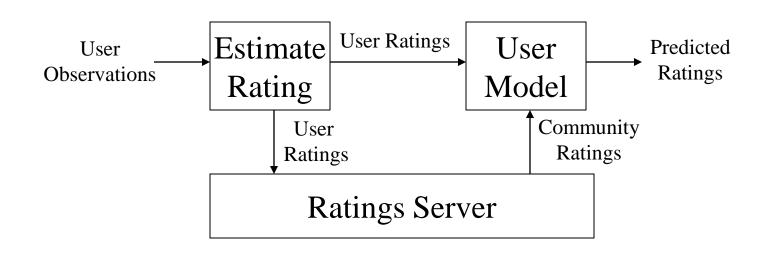
Link

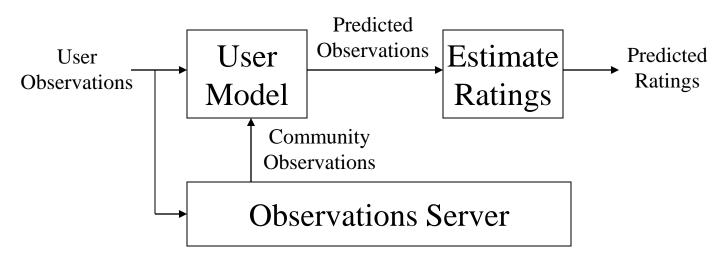
Cite

Mark up Tag Organize

Publish

Type


Edit


Examine	View	Select	
	Listen		
Retain	Print	Bookmark	
		Save	
		Purchase	Subscribe
		Delete	
Reference	Copy / paste	Forward	
	Quote	Reply	
		Link	
		Cite	
Annotate	Mark up	Tag	Organize
	_	Publish	
Create	Type		
	Edit		
•			

Minimum Scope

	_	Segment	Object	Class
	Examine	View	Select	
>		Listen		
	Retain	Print	Bookmark	
50			Save	
te			Purchase	Subscribe
~			Delete	
Behavior Category	Reference	Copy / paste	Forward	
5		Quote	Reply	
· <u>S</u>			Link	
2			Cite	
	Annotate	Mark up	Tag	Organize
\mathbf{m}		-	Publish	
	Create	Type		
		Edit		

Recommending w/Implicit Feedback

Critical Issues

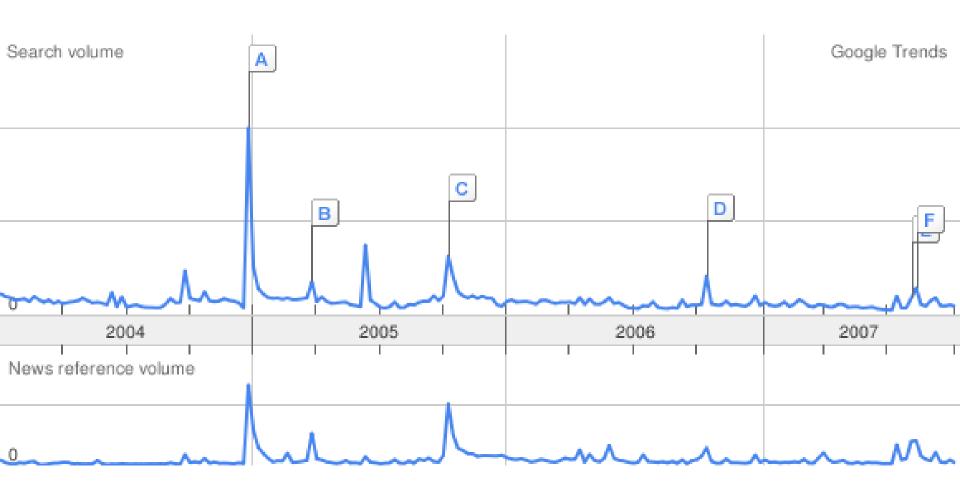
- Protecting privacy
 - What absolute assurances can we provide?
 - How can we make remaining risks understood?
- Scalable rating servers
 - Is a fully distributed architecture practical?
- Non-cooperative users
 - How can the effect of spamming be limited?

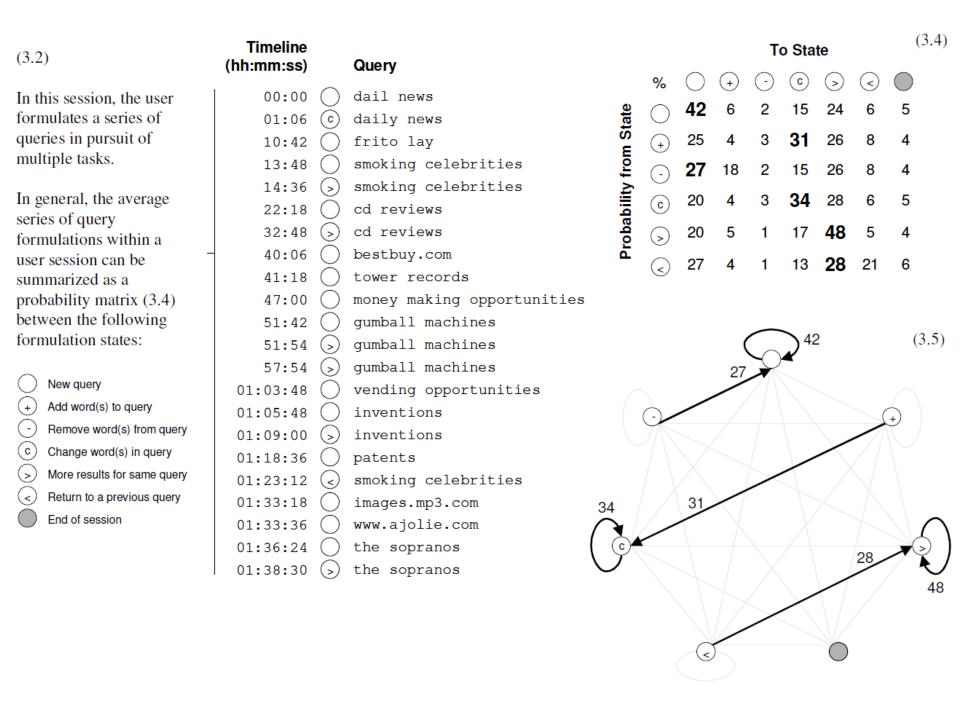
Gaining Access to Observations

- Observe public behavior
 - Hypertext linking, publication, citing, ...
- Policy protection
 - EU: Privacy laws
 - US: Privacy policies + FTC enforcement
- Statistical assurance of privacy
 - Distributed architecture
 - Model and mitigate privacy risks

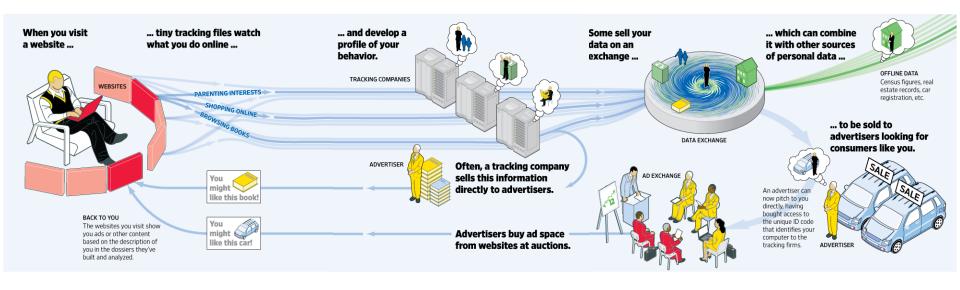
Search Engine Query Logs

A: Southeast Asia (Dec 27, 2004)


B: Indonesia (Mar 29, 2005)


C; Pakistan (Oct 10, 2005)

D; Hawaii (Oct 16, 2006)


E: Indonesia (Aug 8, 2007)

F: Peru (Aug 16, 2007)

The Tracking Ecosystem

