

College of Information Studies

University of Maryland Hornbake Library Building College Park, MD 20742-4345

Web Search

Week 6 LBSC 796/INFM 718R March 9, 2011

Washington Post, February 10, 2011

^{276.12} billion gigabytes

What "Caused" the Web?

- Affordable storage
 - 300,000 words/\$ by 1995
- Adequate backbone capacity
 - 25,000 simultaneous transfers by 1995
- Adequate "last mile" bandwidth
 - 1 second/screen (of text) by 1995
- Display capability
 - 10% of US population could see images by 1995
- Effective search capabilities

- Lycos and Yahoo! achieved useful scale in 1994-1995

Defining the Web

• HTTP, HTML, or URL?

• Static, dynamic or streaming?

• Public, protected, or internal?

Number of Web Sites

What's a Web "Site"?

• Any server at port 80?

– Misses many servers at other ports

Some servers host unrelated content

 Geocities

Some content requires specialized servers

 rtsp

Web Servers

Web Pages (2005)

Gulli and Signorini, 2005

The Indexed Web in 2011

Growth of Average Web Page Size and Number of Objects

Crawling the Web

Basic crawl architecture

URL frontier

Mercator URL frontier

•URLs flow in from the top into the frontier.

•Front queues manage prioritization.

Back queues enforce politeness.

Each queue is FIFO.

Mercator URL frontier: Front queues

 Selection from front queues is initiated by back queues

Pick a front queue from which to select next URL: Round robin, randomly, or more sophisticated variant

But with a bias in favor of high-priority front queues

Mercator URL frontier: Back queues

•When we have emptied a back queue *q*:

Repeat (i) pull URLs *u*from front queues and (ii)
add *u* to its corresponding
back queue . . .

•... until we get a *u* whose host does not have a back queue.

•Then put *u* in *q* and create heap entry for it.

Web Crawling Algorithm

- Put a set of known sites on a queue
- Repeat the until the queue is empty:
 - Take the first page off of the queue
 - Check to see if this page has been processed
 - If this page has not yet been processed:
 - Add this page to the index
 - Add each link on the current page to the queue
 - Record that this page has been processed

Link Structure of the Web

Web Crawl Challenges

- Politeness
- Discovering "islands" and "peninsulas"
- Duplicate and near-duplicate content
 30-40% of total content
- Server and network loads
- Dynamic content generation
- Link rot
 - Changes at ~1% per week
- Temporary server interruptions
- Spider traps

Duplicate Detection

- Structural
 - Identical directory structure (e.g., mirrors, aliases)
- Syntactic
 - Identical bytes
 - Identical markup (HTML, XML, ...)
- Semantic
 - Identical content
 - Similar content (e.g., with a different banner ad)
 - Related content (e.g., translated)

Near-duplicates: Example

Wiki: Michael Jackson (1/6) For other persons named Michael Jackson, see <u>Michael Jackson</u> (disambiguation).

Michael Joseph Jackson (August 29, 1958 - June 25, 2009) was an American recording artist, entertainer and businessman. The seventh child of the Jackson family, he made his debut as an entertainer in 1968 as a member of The Jackson 5. He then began a solo

Next

Previous

(O Hig

Detecting near-duplicates

- Compute similarity with an edit-distance measure
- •We want "syntactic" (as opposed to semantic) similarity.
 - •True semantic similarity (similarity in content) is too difficult to compute.
- •We do not consider documents near-duplicates if they have the same content, but express it with different words.

•Use similarity threshold θ to make the call "is/isn't a near-duplicate".

•E.g., two documents are near-duplicates if similarity

 $> \theta = 80\%$.

Represent each document as set of shingles

•A shingle is simply a word n-gram.

•Shingles are used as features to measure syntactic similarity of documents.

•For example, for n = 3, "a rose is a rose is a rose" would be represented as this set of shingles:

{ a-rose-is, rose-is-a, is-a-rose }

•We can map shingles to $1..2^m$ (e.g., m = 64) by fingerprinting.

•From now on: s_k refers to the shingle's fingerprint in $1..2^m$.

•We define the similarity of two documents as the Jaccard coefficient of their shingle sets.

Shingling: Summary

•Input: N documents

•Choose n-gram size for shingling, e.g., n = 5

Pick 200 random permutations, represented as hash functions

•Compute *N* sketches: $200 \times N$ matrix shown on previous slide, one row per permutation, one column per document

Compute $\frac{N \cdot (N-1)}{2}$ pairwise similarities

•Transitive closure of documents with similarity $> \theta$

Index only one document from each equivalence class

Robots Exclusion Protocol

- Depends on voluntary compliance by crawlers
- Exclusion by site
 - Create a robots.txt file at the <u>server's</u> top level
 - Indicate which directories not to crawl
- Exclusion by document (in HTML head)
 Not implemented by all crawlers

<meta name="robots" content="noindex,nofollow">

Hands on: The Internet Archive

Web crawls since 1997
 http://archive.org

• Check out the iSchool's Web site in 1997

• Check out the history of your favorite site

Indexing Anchor Text

- A type of "document expansion"
 - Terms near links describe content of the target
- Works even when you can't index content
 - Image retrieval, uncrawled links, ...

[Bean - "And that's the way we tried to do every rock. Because you always had the gnomon. And then we took a photo afterwards."]

[Conrad - "We <u>practiced this</u>...I started out by just laying rocks around on the floor. One of the things was setting the camera deal; we had the three (focus) distances. And what we did was actually take pictures to calibrate ourselves. They developed that film in training to make sure we stood the right distance."]

Estimating Authority from Links

Simplified PageRank Algorithm

$$R(u) = c \sum_{v \in B_u} \frac{R(v)}{N_v}$$

R(u): PageRank score of page u B_u : the set of pages that link to u R(v): PageRank score of page v N_V : number of links from page v c: normalization factor

PageRank Algorithm Example

Convergence

Index Spam

• Goal: Manipulate rankings of an IR system

- Multiple strategies:
 - Create bogus user-assigned metadata
 - Add invisible text (font in background color, ...)
 - Alter your text to include desired query terms
 - "Link exchanges" create links to your page
 - Cloaking

Adversarial IR

- Search is user-controlled suppression
 - Everything is known to the search system
 - Goal: avoid showing things the user doesn't want
- Other stakeholders have different goals
 - Authors risk little by wasting your time
 - Marketers hope for serendipitous interest

"Safe Search"

- Text
- Whitelists and blacklists
- Link structure
- Image analysis

Computational Advertizing

- Variant of a search problem
 - Jointly optimize relevance and revenue
- Triangulating features
 - Queries
 - Clicks
 - Page visits
- Auction markers

Internet Users

http://www.internetworldstats.com/

Global Internet Users

Global Internet Users

Native speakers, Global Reach projection for 2004 (as of Sept, 2003)

Global Internet Users

Native speakers, Global Reach projection for 2004 (as of Sept, 2003)

Search Engine Query Logs

A: Southeast Asia (Dec 27, 2004) B: Indonesia (Mar 29, 2005) C; Pakistan (Oct 10, 2005) D; Hawaii (Oct 16, 2006) E: Indonesia (Aug 8, 2007) F: Peru (Aug 16, 2007)

Query Statistics

Pass, et al., "A Picture of Search," 2007

Pass, et al., "A Picture of Search," 2007

Temporal Variation

Pass, et al., "A Picture of Search," 2007

28% of Queries are Reformulations

Timeline (mm:ss) Query nursing registry 00:00 04:18 certified nursing assistant 1 С 08:48 C nursing assistant registry 09:48 **c**) license look up for nursing assistants 10:06 **c**) nursing assistant 1 certification 11:42 **c**) nursing assistant 1 license look ups 12:18 **c**) nursing assistant 1 expiration look up 12:30 **c**) nursing registry in Raleigh 13:24 **c**) nursing aide registry of Raleigh 15:00 nursing aide registry of Raleigh website 16:06 nursing aide registry of Raleigh <) 19:48 north carolina board of nursing information for nursing assistant 1 **c**) 22:24 license look up for nursing assistant 1 **c**) 24:36 license information for nursing assistant 1 expiration **c**) 28:30 north carolina nursing assistant 1 license information **C**)

Pass, et al., "A Picture of Search," 2007

The Tracking Ecosystem

http://wsj.com/wtk

AOL User 4417749

Blogs

Generated by BlogPulse Copyright 2005 Intelliseek, Inc.

🔳 Roberts 📒 Rehnquist 🔳 O'Connor

Daily Posting Volume

The "Deep Web"

• Dynamic pages, generated from databases

• Not easily discovered using crawling

• Perhaps 400-500 times larger than surface Web

• Fastest growing source of new information

Deep Web

• 60 Deep Sites Exceed Surface Web by 40 Times

Name	Туре	URL	Web Size (GBs)
National Climatic Data Center (NOAA)	Public	http://www.ncdc.noaa.gov/ol/satellite/satellitereso urces.html	366,000
NASA EOSDIS	Public	http://harp.gsfc.nasa.gov/~imswww/pub/imswelco me/plain.html	219,600
National Oceanographic (combined with Geophysical) Data Center (NOAA)	Public/Fee	http://www.nodc.noaa.gov/, http://www.ngdc.noaa.gov/	32,940
Alexa	Public (partial)	http://www.alexa.com/	15,860
Right-to-Know Network (RTK Net)	Public	http://www.rtk.net/	14,640
MP3.com	Public	http://www.mp3.com/	

Content of the Deep Web

Year

Semantic Web

• RDF provides the schema for interchange

- Ontologies support <u>automated</u> inference
 Similar to thesauri supporting human reasoning
- Ontology mapping permits distributed creation
 This is where the magic happens ⁽³⁾