
Evidence from Content

LBSC 796/INFM 718R
Session 2

February 9, 2011

Where Representation Fits
DocumentsQuery

Hits

Representation
Function

Representation
Function

Query Representation Document Representation

Comparison
Function Index

Agenda

Character sets
• Terms as units of meaning
• Building an index
• MapReduce
• Project Overview

The character ‘A’

• ASCII encoding: 7 bits used per character
0 1 0 0 0 0 0 1 = 65 (decimal)
0 1 0 0 0 0 0 1 = 41 (hexadecimal)
0 1 0 0 0 0 0 1 = 101 (octal)

• Number of representable character codes:
27 = 128

• Some codes are used as “control characters”
e.g. 7 (decimal) rings a “bell” (these days, a beep) (“^G”)

ASCII
• Widely used in the U.S.

– American Standard
Code for Information
Interchange

– ANSI X3.4-1968

0 NUL	32 SPACE	64 @	96 `	
1 SOH	33 !	65 A	97 a	
2 STX	34 "	66 B	98 b	
3 ETX	35 #	67 C	99 c	
4 EOT	36 $	68 D	100 d	
5 ENQ	37 %	69 E	101 e	
6 ACK	38 &	70 F	102 f	
7 BEL	39 '	71 G	103 g	
8 BS	40 (72 H	104 h	
9 HT	41)	73 I	105 i	
10 LF	42 *	74 J	106 j	
11 VT	43 +	75 K	107 k	
12 FF	44 ,	76 L	108 l	
13 CR	45 -	77 M	109 m	
14 SO	46 .	78 N	110 n	
15 SI	47 /	79 O	111 o	
16 DLE	48 0	80 P	112 p	
17 DC1	49 1	81 Q	113 q	
18 DC2	50 2	82 R	114 r	
19 DC3	51 3	83 S	115 s	
20 DC4	52 4	84 T	116 t	
21 NAK	53 5	85 U	117 u	
22 SYN	54 6	86 V	118 v	
23 ETB	55 7	87 W	119 w	
24 CAN	56 8	88 X	120 x	
25 EM	57 9	89 Y	121 y	
26 SUB	58 :	90 Z	122 z	
27 ESC	59 ;	91 [123 {	
28 FS	60 <	92 \	124	
29 GS	61 =	93]	125 }	
30 RS	62 >	94 ^	126 ~	
31 US	64 ?	95 _	127 DEL	

Geeky Joke for the Day

• Why do computer geeks confuse Halloween
and Christmas?

• Because 31 OCT = 25 DEC!

• 031 OCT = 0*82 + 3*81 + 1*80 octal

= 0*102 + 2*101 + 5*100 decimal

The Latin-1 Character Set

• ISO 8859-1 8-bit characters for Western Europe
– French, Spanish, Catalan, Galician, Basque,

Portuguese, Italian, Albanian, Afrikaans, Dutch,
German, Danish, Swedish, Norwegian, Finnish,
Faroese, Icelandic, Irish, Scottish, and English

Printable Characters, 7-bit ASCII Additional Defined Characters, ISO 8859-1

Other ISO-8859 Character Sets

-2

-3

-4

-5

-7

-6

-9

-8

East Asian Character Sets

• More than 256 characters are needed
– Two-byte encoding schemes (e.g., EUC) are used

• Several countries have unique character sets
– GB in Peoples Republic of China, BIG5 in Taiwan,

JIS in Japan, KS in Korea, TCVN in Vietnam
• Many characters appear in several languages

– Research Libraries Group developed EACC
• Unified “CJK” character set for USMARC records

Unicode

• Single code for all the world’s characters
– ISO Standard 10646

• Separates “code space” from “encoding”
– Code space extends Latin-1

• The first 256 positions are identical
– UTF-7 encoding will pass through email

• Uses only the 64 printable ASCII characters
– UTF-8 encoding is designed for disk file systems

Limitations of Unicode

• Produces larger files than Latin-1
• Fonts may be hard to obtain for some characters
• Some characters have multiple representations

– e.g., accents can be part of a character or separate
• Some characters look identical when printed

– But they come from unrelated languages
• Encoding does not define the “sort order”

Drawing it Together

• Key concepts
– Character, Encoding, Font, Sort order

• Discussion question
– How do you know what character set a

document is written in?
– What if a mixture of character sets was used?

Agenda

• Character sets
Terms as units of meaning
• Building an index
• MapReduce
• Project overview

Strings and Segments
• Retrieval is (often) a search for concepts

– But what we actually search are character strings

• What strings best represent concepts?
– In English, words are often a good choice

• Well-chosen phrases might also be helpful
– In German, compounds may need to be split

• Otherwise queries using constituent words would fail
– In Chinese, word boundaries are not marked

• Thissegmentationproblemissimilartothatofspeech

Tokenization
• Words (from linguistics):

– Morphemes are the units of meaning
– Combined to make words

• Anti (disestablishmentarian) ism

• Tokens (from Computer Science)
– Doug ’s running late !

Morphology
• Inflectional morphology

– Preserves part of speech
– Destructions = Destruction+PLURAL
– Destroyed = Destroy+PAST

• Derivational morphology
– Relates parts of speech
– Destructor = AGENTIVE(destroy)

Stemming
• Conflates words, usually preserving meaning

– Rule-based suffix-stripping helps for English
• {destroy, destroyed, destruction}: destr

– Prefix-stripping is needed in some languages
• Arabic: {alselam}: selam [Root: SLM (peace)]

• Imperfect: goal is to usually be helpful
– Overstemming

• {centennial,century,center}: cent
– Understamming:

• {acquire,acquiring,acquired}: acquir
• {acquisition}: acquis

Longest Substring Segmentation

• Greedy algorithm based on a lexicon

• Start with a list of every possible term

• For each unsegmented string
– Remove the longest single substring in the list
– Repeat until no substrings are found in the list

• Can be extended to explore alternatives

Longest Substring Example
• Possible German compound term:

– washington

• List of German words:
– ach, hin, hing, sei, ton, was, wasch

• Longest substring segmentation
– was-hing-ton
– Roughly translates as “What tone is attached?”

Probabilistic Segmentation

• For an input word c1 c2 c3 … cn

• Try all possible partitions into w1 w2 w3 …
– c1 c2 c3 … cn

– c1 c2 c3 c3 … cn

– c1 c2 c3 … cn etc.
• Choose the highest probability partition

– E.g., compute Pr(w1 w2 w3) using a language model
• Challenges: search, probability estimation

Non-Segmentation: N-gram Indexing

• Consider a Chinese document c1 c2 c3 … cn

• Don’t segment (you could be wrong!)

• Instead, treat every character bigram as a term
c1 c2 , c2 c3 , c3 c4 , … , cn-1 cn

• Break up queries the same way

Relating Words and Concepts
• Homonymy: bank (river) vs. bank (financial)

– Different words are written the same way
– We’d like to work with word senses rather than words

• Polysemy: fly (pilot) vs. fly (passenger)
– A word can have different “shades of meaning”
– Not bad for IR: often helps more than it hurts

• Synonymy: class vs. course
– Causes search failures … well address this next week!

Word Sense Disambiguation

• Context provides clues to word meaning
– “The doctor removed the appendix.”

• For each occurrence, note surrounding words
– e.g., +/- 5 non-stopwords

• Group similar contexts into clusters
– Based on overlaps in the words that they contain

• Separate clusters represent different senses

Disambiguation Example

• Consider four example sentences
– The doctor removed the appendix
– The appendix was incomprehensible
– The doctor examined the appendix
– The appendix was removed

• What clues can you find from nearby words?
– Can you find enough word senses this way?
– Might you find too many word senses?
– What will you do when you aren’t sure?

Why Disambiguation Hurts
• Disambiguation tries to reduce incorrect matches

– But errors can also reduce correct matches

• Ranked retrieval techniques already disambiguate
– When more query terms are present, documents rank higher
– Essentially, queries give each term a context

Phrases
• Phrases can yield more precise queries

– “University of Maryland”, “solar eclipse”
• Automated phrase detection can be harmful

– Infelicitous choices result in missed matches
– Therefore, never index only phrases

• Better to index phrases and their constituent words
– IR systems are good at evidence combination

• Better evidence combination ⇒ less help from phrases

• Parsing is still relatively slow and brittle
– But Powerset is now trying to parse the entire Web

Lexical Phrases

• Same idea as longest substring match
– But look for word (not character) sequences

• Compile a term list that includes phrases
– Technical terminology can be very helpful

• Index any phrase that occurs in the list
• Most effective in a limited domain

– Otherwise hard to capture most useful phrases

Syntactic Phrases
• Automatically construct “sentence diagrams”

– Fairly good parsers are available
• Index the noun phrases

– Might work for queries that focus on objects

Sentence

Noun Phrase

The quick brown fox jumped over the lazy dog’s back

Noun phrase

Det Adj Adj Noun Verb Adj NounAdjDet

Prepositional Phrase

Prep

Syntactic Variations
• The “paraphrase problem”

– Prof. Douglas Oard studies information access patterns.
– Doug studies patterns of user access to different kinds of

information.
• Transformational variants (Jacquemin)

– Coordinations
• lung and breast cancer ⇒ lung cancer

– Substitutions
• inflammatory sinonasal disease ⇒ inflammatory disease

– Permutations
• addition of calcium ⇒ calcium addition

“Named Entity” Tagging

• Automatically assign “types” to words or phrases
– Person, organization, location, date, money, …

• More rapid and robust than parsing

• Best algorithms use “supervised learning”
– Annotate a corpus identifying entities and types
– Train a probabilistic model
– Apply the model to new text

Example: Predictive Annotation
for Question Answering

In reality, at the time of Edison’s 1879 patent, the light bulb

had been in existence for some five decades ….

TIMEPERSON

Who patented the light bulb?
When was the light bulb patented?

patent light bulb PERSON
patent light bulb TIME

A “Term” is Whatever You Index

• Word sense
• Token
• Word
• Stem
• Character n-gram
• Phrase

Summary
• The key is to index the right kind of terms

• Start by finding fundamental features
– So far all we have talked about are character codes
– Same ideas apply to handwriting, OCR, and speech

• Combine them into easily recognized units
– Words where possible, character n-grams otherwise

• Apply further processing to optimize the system
– Stemming is the most commonly used technique
– Some “good ideas” don’t pan out that way

Agenda

• Character sets
• Terms as units of meaning
Building an index
• MapReduce
• Project overview

Where Indexing Fits

Source
Selection

Search

Query

Selection

Ranked List

Examination

Document

Delivery

Document

Query
Formulation

IR System

Indexing Index

Acquisition Collection

Where Indexing Fits
DocumentsQuery

Hits

Representation
Function

Representation
Function

Query Representation Document Representation

Comparison
Function Index

A Cautionary Tale
• Windows “Search” scans a hard drive in minutes

– If it only looks at the file names...

• How long would it take to scan all text on …
– A 100 GB disk?
– For the World Wide Web?

• Computers are getting faster, but…
– How does Google give answers in seconds?

Some Questions for Today
• How long will it take to find a document?

– Is there any work we can do in advance?
– If so, how long will that take?

• How big a computer will I need?
– How much disk space? How much RAM?

• What if more documents arrive?
– How much of the advance work must be repeated?
– Will searching become slower?
– How much more disk space will be needed?

Desirable Index Characteristics

• Very rapid search
– Less than ~100ms is typically imperceivable

• Reasonable hardware requirements
– Processor speed, disk size, main memory size

• “Fast enough” creation and updates
– Every couple of weeks may suffice for the Web
– Every couple of minutes is needed for news

McDonald's slims down spuds
Fast-food chain to reduce certain types of
fat in its french fries with new cooking oil.
NEW YORK (CNN/Money) - McDonald's Corp.
is cutting the amount of "bad" fat in its french
fries nearly in half, the fast-food chain said
Tuesday as it moves to make all its fried menu
items healthier.
But does that mean the popular shoestring fries
won't taste the same? The company says no. "It's
a win-win for our customers because they are
getting the same great french-fry taste along
with an even healthier nutrition profile," said
Mike Roberts, president of McDonald's USA.
But others are not so sure. McDonald's will not
specifically discuss the kind of oil it plans to
use, but at least one nutrition expert says playing
with the formula could mean a different taste.
Shares of Oak Brook, Ill.-based McDonald's
(MCD: down $0.54 to $23.22, Research,
Estimates) were lower Tuesday afternoon. It was
unclear Tuesday whether competitors Burger
King and Wendy's International (WEN: down
$0.80 to $34.91, Research, Estimates) would
follow suit. Neither company could immediately
be reached for comment.
…

16 × said
14 × McDonalds
12 × fat
11 × fries
8 × new
6 × company, french, nutrition
5 × food, oil, percent, reduce,

taste, Tuesday
…

“Bag of Words”

“Bag of Terms” Representation
• Bag = a “set” that can contain duplicates
 “The quick brown fox jumped over the lazy dog’s back” →

{back, brown, dog, fox, jump, lazy, over, quick, the, the}

• Vector = values recorded in any consistent order
 {back, brown, dog, fox, jump, lazy, over, quick, the, the} →

[1 1 1 1 1 1 1 1 2]

Why Does “Bag of Terms” Work?

• Words alone tell us a lot about content

• It is relatively easy to come up with words
that describe an information need

Random: beating takes points falling another Dow 355

Alphabetical: 355 another beating Dow falling points

Actual: Dow takes another beating, falling 355 points

Bag of Terms Example

The quick brown
fox jumped over
the lazy dog’s
back.

Document 1

Document 2

Now is the time
for all good men
to come to the
aid of their party.

the

quick

brown

fox

over

lazy

dog

back

now

is

time

for
all

good

men

tocome

jump

aid

of

their

party

0
0
1
1
0
1
1
0
1
1
0
0
1
0
1
0
0

1
1
0
0
1
0
0
1
0
0
1
1
0
1
0
1
1

Term D
oc

um
en

t 1
D

oc
um

en
t 2

Stopword
List

Boolean “Free Text” Retrieval

• Limit the bag of words to “absent” and “present”
– “Boolean” values, represented as 0 and 1

• Represent terms as a “bag of documents”
– Same representation, but rows rather than columns

• Combine the rows using “Boolean operators”
– AND, OR, NOT

• Result set: every document with a 1 remaining

AND/OR/NOT

A B

All documents

C

Boolean Operators

0 1

1 1

0 1

0

1
A OR B

A AND B A NOT B

A
B

0 0

0 1

0 1

0

1

A
B

0 0

1 0

0 1

0

1

A
B

1 0

0 1B

NOT B

(= A AND NOT B)

Boolean View of a Collection

quick

brown

fox

over

lazy

dog

back

now

time

all

good

men

come

jump

aid

their

party

0
0
1
1
0
0
0
0
0
1
0
0
1
0
1
1
0

0
1
0
0
1
0
0
1
0
0
1
1
0
0
0
0
1

Term

D
oc

 1
D

oc
 2

0
0
1
1
0
1
1
0
1
1
0
0
1
0
1
0
0

1
1
0
0
1
0
0
1
0
0
1
0
0
0
0
0
1

D
oc

 3
D

oc
 4

0
0
0
1
0
1
1
0
0
1
0
0
1
0
0
1
0

0
1
0
0
1
0
0
1
0
0
0
1
0
1
0
0
1

D
oc

 5
D

oc
 6

0
0
1
1
0
0
1
0
0
1
0
0
1
0
0
1
0

1
0
0
0
1
0
0
1
0
0
1
1
1
1
0
0
0

D
oc

 7
D

oc
 8

Each column represents the view of
a particular document: What terms
are contained in this document?

Each row represents the view of a
particular term: What documents
contain this term?

To execute a query, pick out rows
corresponding to query terms and
then apply logic table of
corresponding Boolean operator

Sample Queries

fox
dog 0

0
0
0

1
1

0
0

1
1

0
0

0
1

0
0

Term

D
oc

 1
D

oc
 2

D
oc

 3
D

oc
 4

D
oc

 5
D

oc
 6

D
oc

 7
D

oc
 8

dog ∧ fox 0 0 1 0 1 0 0 0

dog ∨ fox 0 0 1 0 1 0 1 0

dog ¬ fox 0 0 0 0 0 0 0 0

fox ¬ dog 0 0 0 0 0 0 1 0

dog AND fox → Doc 3, Doc 5

dog OR fox → Doc 3, Doc 5, Doc 7

dog NOT fox → empty

fox NOT dog → Doc 7

good
party

0
0

1
0

0
0

1
0

0
0

1
1

0
0

1
1

g ∧ p 0 0 0 0 0 1 0 1

g ∧ p ¬ o 0 0 0 0 0 1 0 0

good AND party → Doc 6, Doc 8
over 1 0 1 0 1 0 1 1

good AND party NOT over → Doc 6

Term

D
oc

 1
D

oc
 2

D
oc

 3
D

oc
 4

D
oc

 5
D

oc
 6

D
oc

 7
D

oc
 8

Why Boolean Retrieval Works

• Boolean operators approximate natural language
– Find documents about a good party that is not over

• AND can discover relationships between concepts
– good party

• OR can discover alternate terminology
– excellent party

• NOT can discover alternate meanings
– Democratic party

Proximity Operators

• More precise versions of AND
– “NEAR n” allows at most n-1 intervening terms
– “WITH” requires terms to be adjacent and in order

• Easy to implement, but less efficient
– Store a list of positions for each word in each doc

• Warning: stopwords become important!
– Perform normal Boolean computations

• Treat WITH and NEAR like AND with an extra constraint

Proximity Operator Example

• time AND come
– Doc 2

• time (NEAR 2) come
– Empty

• quick (NEAR 2) fox
– Doc 1

• quick WITH fox
– Empty

quick

brown

fox

over

lazy

dog

back

now

time

all

good

men

come

jump

aid

their

party

0 1 (9)

Term
1 (13)
1 (6)

1 (7)

1 (8)

1 (16)

1 (1)

1 (2)
1 (15)
1 (4)

0

0
0

0

0
0

0

0

0

0

0

0

0
0

0

0

1 (5)

1 (9)

1 (3)

1 (4)

1 (8)

1 (6)

1 (10)

D
oc

 1

D
oc

 2

Other Extensions

• Ability to search on fields
– Leverage document structure: title, headings, etc.

• Wildcards
– lov* = love, loving, loves, loved, etc.

• Special treatment of dates, names, companies, etc.

WESTLAW® Query Examples
• What is the statute of limitations in cases involving the federal tort claims act?

– LIMIT! /3 STATUTE ACTION /S FEDERAL /2 TORT /3 CLAIM

• What factors are important in determining what constitutes a vessel for
purposes of determining liability of a vessel owner for injuries to a seaman
under the “Jones Act” (46 USC 688)?

– (741 +3 824) FACTOR ELEMENT STATUS FACT /P VESSEL SHIP BOAT /P
(46 +3 688) “JONES ACT” /P INJUR! /S SEAMAN CREWMAN WORKER

• Are there any cases which discuss negligent maintenance or failure to maintain
aids to navigation such as lights, buoys, or channel markers?

– NOT NEGLECT! FAIL! NEGLIG! /5 MAINT! REPAIR! /P NAVIGAT! /5 AID
EQUIP! LIGHT BUOY “CHANNEL MARKER”

• What cases have discussed the concept of excusable delay in the application of
statutes of limitations or the doctrine of laches involving actions in admiralty or
under the “Jones Act” or the “Death on the High Seas Act”?

– EXCUS! /3 DELAY /P (LIMIT! /3 STATUTE ACTION) LACHES /P “JONES
ACT” “DEATH ON THE HIGH SEAS ACT” (46 +3 761)

An “Inverted Index”

quick

brown

fox

over

lazy

dog

back

now

time

all

good

men

come

jump

aid

their

party

0
0
1
1
0
0
0
0
0
1
0
0
1
0
1
1
0

0
1
0
0
1
0
0
1
0
0
1
1
0
0
0
0
1

Term D
oc

 1
D

oc
 2

0
0
1
1
0
1
1
0
1
1
0
0
1
0
1
0
0

1
1
0
0
1
0
0
1
0
0
1
0
0
0
0
0
1

D
oc

 3
D

oc
 4

0
0
0
1
0
1
1
0
0
1
0
0
1
0
0
1
0

0
1
0
0
1
0
0
1
0
0
0
1
0
1
0
0
1

D
oc

 5
D

oc
 6

0
0
1
1
0
0
1
0
0
1
0
0
1
0
0
1
0

1
0
0
0
1
0
0
1
0
0
1
1
1
1
0
0
0

D
oc

 7
D

oc
 8

A

B

C

F
D

G
J
L
M
N
O
P
Q

T

AI
AL
BA
BR

TH
TI

4, 8
2, 4, 6
1, 3, 7

1, 3, 5, 7
2, 4, 6, 8

3, 5
3, 5, 7

2, 4, 6, 8
3

1, 3, 5, 7
2, 4, 8
2, 6, 8

1, 3, 5, 7, 8
6, 8
1, 3

1, 5, 7
2, 4, 6

PostingsTerm Index

Saving Space

• Can we make this data structure smaller,
keeping in mind the need for fast retrieval?

• Observations:
– The nature of the search problem requires us to

quickly find which documents contain a term
– The term-document matrix is very sparse
– Some terms are more useful than others

What Actually Gets Stored

quick

brown

fox

over

lazy

dog

back

now

time

all

good

men

come

jump

aid

their

party

Term

A

B

C

F
D

G
J
L
M
N
O
P
Q

T

AI
AL
BA
BR

TH
TI

4, 8
2, 4, 6
1, 3, 7

1, 3, 5, 7
2, 4, 6, 8

3, 5
3, 5, 7

2, 4, 6, 8
3

1, 3, 5, 7
2, 4, 8
2, 6, 8

1, 3, 5, 7, 8
6, 8
1, 3

1, 5, 7
2, 4, 6

PostingsTerm Index

Deconstructing the Inverted Index

quick

brown

fox

over

lazy

dog

back

now

time

all

good

men

come

jump

aid

their

party

Postings File

1, 3

1, 3, 5, 7

3, 5, 7

1, 3, 5, 7, 8

1, 3, 5, 7

3, 5

1, 3, 7

2, 6, 8

2, 4, 6

2, 4, 6

2, 4, 6, 8

2, 4, 8

2, 4, 6, 8

3

4, 8

1, 5, 7

6, 8

The term Index

Term Index Size

• Heap’s Law tells us about vocabulary size

– When adding new documents, the system is
likely to have seen terms already

– Usually fits in RAM
• But the postings file keeps growing!

βKnV =
6020 ., ≈≈ βK

V is vocabulary size
n is corpus size (number of documents)
K and β are constants

relaxation

astronomical

zebra

belligerent

subterfuge

daffodil

cadence

wingman

loiter

peace

arcade

respondent

complex

tax

kingdom

jambalaya

Linear Dictionary Lookup

• How long does this take, in
the worst case?

• Running time is proportional
to number of entries in the
dictionary

• This algorithm is O(n)
= linear time algorithm

Suppose we want to find the word “complex”

Found it!

With a Sorted Dictionary

• How long does this take, in
the worst case?

arcade

astronomical

belligerent

cadence

complex

daffodil

jambalaya

kingdom

loiter

peace

relaxation

respondent

subterfuge

tax

wingman

zebra

Let’s try again, except this time with a sorted dictionary: find “complex”

Found it!

Which is Faster?

• Two algorithms:
– O(n): Sequentially “search”
– O(log n): Binary “search”

• Big-O notation
– Allows us to compare different algorithms on

very large collections

Computational Complexity
• Time complexity: how long will it take …

– At index-creation time?
– At query time?

• Space complexity: how much memory is needed …
– In RAM?
– On disk?

• Things you need to know to assess complexity:
– What is the “size” of the input? (“n”)
– What are the internal data structures?
– What is the algorithm?

Complexity for Small n

0

500

1000

1500

2000

2500

3000

3500

4000

4500

10 20 30 40

10n
n^2
100n

0

20000

40000

60000

80000

100000

120000

140000

50 200 350

10n
n^2
100n
100n+25263

“Asymptotic” Complexity

Building a Term Index
• Simplest solution is a single sorted array

– Fast lookup using binary search
– But sorting is expensive [it’s O(n * log n)]

• And adding one document means starting over

• Tree structures allow easy insertion
– But the worst case lookup time is O(n)

• Balanced trees provide the best of both
– Fast lookup [O (log n) and easy insertion [O(log n)]
– But they require 45% more disk space

Starting a B+ Tree Term Index

now timegoodall

aaaaa now

Now is the time for all good …

Adding a New Term

now timegoodall

aaaaa now

Now is the time for all good men …

aaaaa men

men

What’s in the Postings File?

• Boolean retrieval
– Just the document number

• Proximity operators
– Word offsets for each occurrence of the term

• Example: Doc 3 (t17, t36), Doc 13 (t3, t45)

• Ranked Retrieval
– Document number and term weight

How Big Is a Raw Postings File?

• Very compact for Boolean retrieval
– About 10% of the size of the documents

• If an aggressive stopword list is used!

• Not much larger for ranked retrieval
– Perhaps 20%

• Enormous for proximity operators
– Sometimes larger than the documents!

Large Postings Files are Slow
• RAM

– Typical size: 1 GB
– Typical access speed: 50 ns

• Hard drive:
– Typical size: 80 GB (my laptop)
– Typical access speed: 10 ms

• Hard drive is 200,000x slower than RAM!

• Discussion question:
– How does stopword removal improve speed?

Zipf’s Law

• George Kingsley Zipf (1902-1950) observed
that for many frequency distributions, the nth
most frequent event is related to its frequency
in the following manner:

crf =⋅

or

r
cf =

f = frequency
r = rank
c = constant

Zipfian Distribution: The “Long Tail”

• A few elements occur very frequently
• Many elements occur very infrequently

Some Zipfian Distributions

• Library book checkout patterns
• Website popularity
• Incoming Web page requests
• Outgoing Web page requests
• Document size on Web

Word Frequency in English

the 1130021 from 96900 or 54958
of 547311 he 94585 about 53713
to 516635 million 93515 market 52110
a 464736 year 90104 they 51359
in 390819 its 86774 this 50933
and 387703 be 85588 would 50828
that 204351 was 83398 you 49281
for 199340 company 83070 which 48273
is 152483 an 76974 bank 47940
said 148302 has 74405 stock 47401
it 134323 are 74097 trade 47310
on 121173 have 73132 his 47116
by 118863 but 71887 more 46244
as 109135 will 71494 who 42142
at 101779 say 66807 one 41635
mr 101679 new 64456 their 40910
with 101210 share 63925

Frequency of 50 most common words in English
(sample of 19 million words)

Demonstrating Zipf’s Law

the 59 from 92 or 101
of 58 he 95 about 102
to 82 million 98 market 101
a 98 year 100 they 103
in 103 its 100 this 105
and 122 be 104 would 107
that 75 was 105 you 106
for 84 company 109 which 107
is 72 an 105 bank 109
said 78 has 106 stock 110
it 78 are 109 trade 112
on 77 have 112 his 114
by 81 but 114 more 114
as 80 will 117 who 106
at 80 say 113 one 107
mr 86 new 112 their 108
with 91 share 114

The following shows rf*1000/n
r is the rank of word w in the sample
f is the frequency of word w in the sample
n is the total number of word occurrences in the sample

Index Compression
• CPU’s are much faster than disks

– A disk can transfer 1,000 bytes in ~20 ms
– The CPU can do ~10 million instructions in that time

• Compressing the postings file is a big win
– Trade decompression time for fewer disk reads

• Key idea: reduce redundancy
– Trick 1: store relative offsets (some will be the same)
– Trick 2: use an optimal coding scheme

Compression Example

• Postings (one byte each = 7 bytes = 56 bits)
– 37, 42, 43, 48, 97, 98, 243

• Difference
– 37, 5, 1, 5, 49, 1, 145

• Optimal (variable length) Huffman Code
– 0:1, 10:5, 110:37, 1110:49, 1111: 145

• Compressed (17 bits)
– 11010010111001111

Remember This?

fox
dog 0

0
0
0

1
1

0
0

1
1

0
0

0
1

0
0

Term

D
oc

 1
D

oc
 2

D
oc

 3
D

oc
 4

D
oc

 5
D

oc
 6

D
oc

 7
D

oc
 8

dog ∧ fox 0 0 1 0 1 0 0 0

dog ∨ fox 0 0 1 0 1 0 1 0

dog ¬ fox 0 0 0 0 0 0 0 0

fox ¬ dog 0 0 0 0 0 0 1 0

dog AND fox → Doc 3, Doc 5

dog OR fox → Doc 3, Doc 5, Doc 7

dog NOT fox → empty

fox NOT dog → Doc 7

good
party

0
0

1
0

0
0

1
0

0
0

1
1

0
0

1
1

g ∧ p 0 0 0 0 0 1 0 1

g ∧ p ¬ o 0 0 0 0 0 1 0 0

good AND party → Doc 6, Doc 8
over 1 0 1 0 1 0 1 1

good AND party NOT over → Doc 6

Term

D
oc

 1
D

oc
 2

D
oc

 3
D

oc
 4

D
oc

 5
D

oc
 6

D
oc

 7
D

oc
 8

Indexing-Time, Query-Time

• Indexing
– Walk the term index, splitting if needed
– Insert into the postings file in sorted order
– Hours or days for large collections

• Query processing
– Walk the term index for each query term
– Read the postings file for that term from disk
– Compute search results from posting file entries
– Seconds, even for enormous collections

Summary

• Slow indexing yields fast query processing
– Key fact: most terms don’t appear in most documents

• We use extra disk space to save query time
– Index space is in addition to document space
– Time and space complexity must be balanced

• Disk block reads are the critical resource
– This makes index compression a big win

Agenda

• Character sets
• Terms as units of meaning
• Building an index
MapReduce
Project Overview

Source: Wikipedia (IBM Roadrunner)

Divide and Conquer

“Work”

w1 w2 w3

r1 r2 r3

“Result”

“worker” “worker” “worker”

Partition

Combine

Parallelization Challenges
 How do we assign work units to workers?

 What if we have more work units than workers?

 What if workers need to share partial results?

 How do we aggregate partial results?

 How do we know all the workers have finished?

 What if workers die?

What is the common theme of all of these problems?

Managing Multiple Workers
 Difficult because

 We don’t know the order in which workers run
 We don’t know when workers interrupt each other
 We don’t know the order in which workers access shared data

 Thus, we need:
 Semaphores (lock, unlock)
 Conditional variables (wait, notify, broadcast)
 Barriers

 Still, lots of problems:
 Deadlock, livelock, race conditions...
 Dining philosophers, sleeping barbers, cigarette smokers...

 Moral of the story: be careful!

“Big Ideas”
 Scale “out”, not “up”

 Limits of SMP and large shared-memory machines

 Move processing to the data
 Cluster have limited bandwidth

 Process data sequentially, avoid random access
 Seeks are expensive, disk throughput is reasonable

 Seamless scalability
 From the mythical man-month to the tradable machine-hour

Typical Large-Data Problem
 Iterate over a large number of records

 Extract something of interest from each

 Shuffle and sort intermediate results

 Aggregate intermediate results

 Generate final output

Key idea: provide a functional abstraction for
these two operations

(Dean and Ghemawat, OSDI 2004)

MapReduce
 Programmers specify two functions:

map (k, v) → <k’, v’>*
reduce (k’, v’) → <k’, v’>*
 All values with the same key are sent to the same reducer

 The execution framework handles everything else…

mapmap map map

Shuffle and Sort: aggregate values by keys

reduce reduce reduce

k1 k2 k3 k4 k5 k6v1 v2 v3 v4 v5 v6

ba 1 2 c c3 6 a c5 2 b c7 8

a 1 5 b 2 7 c 2 3 6 8

r1 s1 r2 s2 r3 s3

MapReduce
 Programmers specify two functions:

map (k, v) → <k’, v’>*
reduce (k’, v’) → <k’, v’>*
 All values with the same key are sent to the same reducer

 The execution framework handles everything else…

What’s “everything else”?

MapReduce “Runtime”
 Handles scheduling

 Assigns workers to map and reduce tasks

 Handles “data distribution”
 Moves processes to data

 Handles synchronization
 Gathers, sorts, and shuffles intermediate data

 Handles errors and faults
 Detects worker failures and restarts

 Everything happens on top of a distributed FS (later)

MapReduce
 Programmers specify two functions:

map (k, v) → <k’, v’>*
reduce (k’, v’) → <k’, v’>*
 All values with the same key are reduced together

 The execution framework handles everything else…

 Not quite…usually, programmers also specify:
partition (k’, number of partitions) → partition for k’
 Often a simple hash of the key, e.g., hash(k’) mod n
 Divides up key space for parallel reduce operations
combine (k’, v’) → <k’, v’>*
 Mini-reducers that run in memory after the map phase
 Used as an optimization to reduce network traffic

split 0
split 1
split 2
split 3
split 4

worker

worker

worker

worker

worker

Master

User
Program

output
file 0

output
file 1

(1) submit

(2) schedule map (2) schedule reduce

(3) read
(4) local write

(5) remote read
(6) write

Input
files

Map
phase

Intermediate files
(on local disk)

Reduce
phase

Output
files

Adapted from (Dean and Ghemawat, OSDI 2004)

Project Options

• Instructor-designed project
– Team of ~6: design, implementation, evaluation
– Data is in hand, broad goals are outlined
– Fixed “deliverable” schedule

• Roll-your-own project
– Individual, or group of any (reasonable) size
– Pick your own topic and deliverables
– Requires my approval (start discussion by Feb 16)

Don’t forget the homework due next week!

Before You Go!

On a sheet of paper, please briefly answer
the following question (no names):

What was the muddiest point in today’s
lecture?

	Evidence from Content
	Where Representation Fits
	Agenda
	The character ‘A’
	ASCII
	Geeky Joke for the Day
	The Latin-1 Character Set
	Other ISO-8859 Character Sets
	East Asian Character Sets
	Unicode
	Limitations of Unicode
	Drawing it Together
	Agenda
	Strings and Segments
	Tokenization
	Morphology
	Stemming
	Longest Substring Segmentation
	Longest Substring Example
	Probabilistic Segmentation
	Non-Segmentation: N-gram Indexing
	Relating Words and Concepts
	Word Sense Disambiguation
	Disambiguation Example
	Why Disambiguation Hurts
	Phrases
	Lexical Phrases
	Syntactic Phrases
	Syntactic Variations
	“Named Entity” Tagging
	Example: Predictive Annotation for Question Answering
	A “Term” is Whatever You Index
	Summary
	Agenda
	Where Indexing Fits
	Where Indexing Fits
	A Cautionary Tale
	Some Questions for Today
	Desirable Index Characteristics
	Slide Number 40
	“Bag of Terms” Representation
	Why Does “Bag of Terms” Work?
	Bag of Terms Example
	Boolean “Free Text” Retrieval
	AND/OR/NOT
	Boolean Operators
	Boolean View of a Collection
	Sample Queries
	Why Boolean Retrieval Works
	Proximity Operators
	Proximity Operator Example
	Other Extensions
	WESTLAW® Query Examples
	An “Inverted Index”
	Saving Space
	What Actually Gets Stored
	Deconstructing the Inverted Index
	Term Index Size
	Linear Dictionary Lookup
	With a Sorted Dictionary
	Which is Faster?
	Computational Complexity
	Complexity for Small n
	“Asymptotic” Complexity
	Building a Term Index
	Starting a B+ Tree Term Index
	Adding a New Term
	What’s in the Postings File?
	How Big Is a Raw Postings File?
	Large Postings Files are Slow
	Zipf’s Law
	Zipfian Distribution: The “Long Tail”
	Some Zipfian Distributions
	Word Frequency in English
	Demonstrating Zipf’s Law
	Index Compression
	Compression Example
	Remember This?
	Indexing-Time, Query-Time
	Summary
	Agenda
	Slide Number 82
	Divide and Conquer
	Parallelization Challenges
	Managing Multiple Workers
	“Big Ideas”
	Typical Large-Data Problem
	MapReduce
	Slide Number 89
	MapReduce
	MapReduce “Runtime”
	MapReduce
	Slide Number 93
	Project Options
	Before You Go!

