
The World Wide Web Consortium’s Synchro-
nized Multimedia Integration Language for-

mat for encoding multimedia presentations for
delivery over the Web is a little-known but widely
used standard. First released in mid-1998, SMIL
has been installed on approximately 200,000,000
desktops worldwide, primarily because of its adop-
tion in RealPlayer G2, Quicktime 4.1, and Inter-
net Explorer 5.5. In August 2001, the W3C
released a significant update with SMIL 2.0.1

In a two-part report on SMIL 2.0, I will discuss
the basics of SMIL 2.0 and compare its features
with other formats. This article will focus on
SMIL’s basic concepts and structure. Part two, in
the January–March 2002 issue, will look at
detailed examples of SMIL 2.0, covering both sim-
ple and complex examples. It’ll also contrast the
facilities in SMIL 2.0 and MPEG-4.

Design goals
We can partition the goals for SMIL 2.0’s

design across three broad categories:

❚ Extend SMIL 1.0’s functionality. The designers of
SMIL’s first version purposefully kept the lan-
guage simple and relatively frills-free. SMIL 2.0
provides some desirable additions, including
support for increased interaction, enhanced
timing semantics, extended content control
and layout facilities, and new animation and
transitions primitives.

❚ Maintain a declarative, XML format. Although
integrating multimedia content is its main
function, SMIL 2.0 was developed to remain a
fully declarative rather than a procedural for-
mat. Therefore, a SMIL description doesn’t
define how to implement a presentation but
leaves the specification’s implementation up
to the SMIL player. Also, in keeping with
SMIL’s first version, SMIL 2.0 is fully XML-
compliant.

❚ Introduce a module-based structure. SMIL 1.0 was
a simple, 29-page specification, but SMIL 2.0
has more than 50 modules (in more than 500
pages) that users can partition into 13
functional groups. Using a module structure,
we can integrate key aspects of SMIL 2.0 into
other XML-based languages without requiring
support for the entire SMIL 2.0 specification.
Even before the SMIL 2.0 language
specification’s release, parts of SMIL have been
integrated into several other XML languages
(such as Scalable Vector Graphics), and we can
expect more examples of module reuse.

As of this summer, several commercial versions
of SMIL 2.0 were available. Oratrix released the
first, its Grins SMIL 2.0 player (http://www.
oratrix.com/GRiNS), in September 2000.2 Major
mass-market media companies such as RealNet-
works and Microsoft have also announced sup-
port for all or some of SMIL 2.0’s features. The
Third Generation Partnership Project (3GPP) con-
sortium, the standardization body coordinating
the deployment of next-generation wireless
devices, recommended that industry use SMIL 2.0
as the basis for wireless multimedia devices.

What it isn’t (and is)
Often, multimedia presentations are charac-

terized by their content rather than their compo-
sition. Because of this, there has been some
confusion about what a SMIL presentation is and
isn’t. It’s easy to summarize what SMIL 2.0 isn’t:

❚ SMIL 2.0 isn’t a Flash substitute. Flash (http://
www.macromedia.com/flash) is a proprietary
content media type that is primarily used for
small animations. SMIL 2.0 isn’t a content
media type because it doesn’t define any par-
ticular type of media (such as vector or raster
images, videos, text, or audio data). Instead of
media content, SMIL describes media compo-

82 1070-986X/01/$10.00 © 2001 IEEE

Standards Editor: Peiya Liu
Siemens Corporate Research

Dick C.A.
Bulterman

Oratrix
Development, The

Netherlands

SMIL 2.0
Part 1: Overview, Concepts, and Structure

sition. A SMIL presentation can include Flash
objects.

❚ SMIL 2.0 isn’t an MPEG-4 substitute. MPEG-4 is a
highly touted (but lightly implemented and
deployed) format for describing a media object’s
content and interaction.3 More precisely,
MPEG-4 is a family of protocols that covers a
wide range of media-related concerns but not a
specific solution to any one class of media pre-
sentation. As we’ll see, researchers have done
considerable work to coordinate the develop-
ment of SMIL 2.0 and MPEG-4 through the
Extensible MPEG-4 Textual (XMT)4 format
specification.

❚ SMIL 2.0 isn’t a Dynamic HTML5 substitute. D-
HTML was introduced as a way to introduce
local time and animation effects into static
HTML Web pages. Although some of the
animation primitives in SMIL 2.0 resemble the
functionality of some D-HTML uses, SMIL’s
scope is much broader than the local nature of
D-HTML.

What is SMIL 2.0 then? It’s a collection of XML
elements and attributes that we can use to
describe the temporal and spatial coordination of
one or more media objects. SMIL 2.0 lets users
define how independent media objects should be
integrated during a presentation’s lifetime. For
example, that presentation may be delivered via a
streaming server or played locally.

SMIL 2.0 defines 10 major functional groupings
of elements and attributes (see Figure 1). Of these,
the timing and synchronization grouping is the
core of the SMIL specification. The functional
groupings represent collections of individual SMIL
2.0 modules, each of which defines elements and
attributes intended to address specific multimedia

issues in a reusable manner. The number of mod-
ules per functional grouping varies from two to
about 20. Generally, the more modules per group-
ing the finer each module’s granularity.

SMIL 2.0’s developers intended for its modu-
larization to facilitate the reuse of SMIL function-
ality in other XML languages and help define a
number of SMIL profiles. Each profile provides a
collection of modules that users can customize to
its primary goal. The initial partitioning of SMIL
2.0 profiles includes SMIL 2.0 language, SMIL
basic, and XHTML+SMIL. Of these, the SMIL 2.0
language and basic profiles completed the
required review and implementation require-
ments of the W3C for the summer 2001 release of
SMIL 2.0. The XHTML+SMIL profile,6 which inte-
grates SMIL timing, animation, and transitions
modules (among others) into XHTML, wasn’t
completed and remains under development by
the W3C. In addition to the three SMIL profiles,
W3C also released a version of SMIL Animation in
July 2001 for final review by its members.

Structure, timelines, and SMIL
A SMIL presentation is a structured composi-

tion of autonomous media objects. As Figure 2
(next page) shows, we can use three basic timing
containers in a SMIL presentation:

❚ seq, or sequential time container. A seq con-
tainer’s children are rendered so that a succes-
sor child can’t begin before its predecessor
child completes. A successor child might have
an additional start delay, but this delay can’t
resolve to be negative in relation to the end
time of its predecessor. (See Figure 2a).

❚ par, or parallel time container. A par contain-
er’s children are all rendered in parallel. In
terms of a SMIL’s timing model, this doesn’t

83

O
cto

b
er–D

ecem
b

er 2001

Animation Content
control Layout Linking Media

objects

Meta-
information Structure Time

manipulation TransitionsTiming and
synchronization

Figure 1. SMIL 2.0’s

functional grouping of

module sets.

mean that they get rendered at the same time
but that they share a common timebase
defined by the par container, and any or all of
the children can be active at any time that the
parent par is active. The par is the most gener-
al SMIL time container. (See Figure 2b).

❚ excl, or exclusive time container. Only one of the
children of an excl can be active at a time. The
children’s activation order depends on the begin
attribute of the excl’s children. Typically, each
will have an event-based start condition (such as
begin=“button1.activateEvent”) that lets
one of the children start on demand. The excl
container is new in SMIL 2.0. (See Figure 2c).

We can nest the three basic time container types
in a presentation hierarchy. That is, any child of a
par, seq, or excl can be a simple media object or an
embedded par, seq, or excl container. As in SMIL
1.0, the hierarchy can represent relatively static pre-
sentation timing. Introducing event-based activa-
tion or termination in SMIL 2.0 also lets users
define a dynamic activation path. Note that most
other multimedia formats only support a par-like
semantic, not the seq or excl semantics.

A fundamental property of multimedia presen-
tations is that they contain media objects requir-
ing some notion of time for correct presentation.
To model presentations, we often use a timeline
metaphor. To understand SMIL 2.0, we can apply

the timeline metaphor to containers that hold
only static objects for which we know all timing
information (including activation time, termina-
tion time, and object duration) at the time of
authoring. For containers like the excl where the
activation or termination time is unknown until
the object actually starts, or for par’s containing
objects with unresolved begin or end times, the
timeline metaphor is essentially useless. While this
presents a challenge to authoring software design-
ers, it provides a SMIL 2.0 document with unprece-
dented temporal flexibility and adaptability
because the effective presentation timeline is deter-
mined at runtime, based on the individual media
objects activated and their activation order.

Unlike media formats that force users to explic-
itly define when each object begins and ends rel-
ative to a single timeline, SMIL provides a logical
timing framework in which we can use the struc-
tured relationship of objects to define most tim-
ing relationships among objects.7 When writing a
SMIL file, authors don’t have to worry about the
exact starting or ending times because these can
be gleaned from the presentation’s par, seq, and
excl structure. In a SMIL specification, the objects’
structured composition determines the timeline,
rather than the timeline being the basic composi-
tional unit.

The decoupling of timing resolution from a
presentation specification lets, for example, a pre-
sentation’s entire timing be changed based on the

84

IE
EE

 M
ul

ti
M

ed
ia

Standards

<seq>

 <img id="a" dur="6s"

 begin="0s" src="..." />

 <img id="b" dur="4s"

 begin="0s" src="..." />

 <img id="c" dur="5s"

 begin="2s" src="..." />

</seq>

<par>

 <img id="a" dur="6s"

 begin="0s" src="..."/>

 <img id="b" dur="4s"

 begin="0s" src="..."/>

 <img id="c" dur="5s"

 begin="2s" src="..."/>

</par>

<excl>

 <img id="a" dur="6s" src="..."

 begin="0s;x.activateEvent" />

 <img id="b" dur="4s" src="..."

 begin="y.activateEvent" />

 <img id="c" dur="5s" src="..."

 begin="z.activateEvent" />

</excl>

(a) (b) (c)

a b c

seq

t

a

b

c
par

t

t

a

t

b

t

c
excl

Figure 2. SMIL 2.0 time containers. (a) A SMIL seq container plus a SMIL 2.0 code fragment. Note that begin times are relative to the

predecessor’s end. (b) A par container, with the same timing offsets. Note that begin times are relative to the containing par. (c) An excl

container. Object a starts at time 0 of the excl and whenever object x (not shown) is activated. Objects b and c start only when objects

y and z (not shown) are activated. Because the actual activation times depends on event activity, we can’t use a common timeline to

model the relationships among a, b, and c.

content’s dynamic associations. Consider the fol-
lowing SMIL 2.0 code fragment:

<par endsync=“select”>

<excl id=“select”>

<text src=“.../todays_txt.html”

begin=“btn_a.activeEvent”

dur=“25s”/>

<video src=“.../todays_video.mpg”

begin=“btn_b.activeEvent” />

</excl>

<audio src=“.../todays_tune.mp3”

repeat=“indefinite”/>

</par>

The outer par contains two button images
(btn_a and btn_b), an audio object reference,
and an excl container (named select). The excl
contains text and video object references. Note
that each of the media object references is indi-
rect: they point to external data that can change
on a hourly, daily, or weekly basis.

The button images display for 10 and 5 sec-
onds, respectively, when the par starts. The back-
ground music also begins and repeats
indefinitely—that is, it repeats until the contain-
ing par ends. Because the par contains the direc-
tive endsync=“select”, it will end when the
select object ends. The select object ends
when either the text or the video object ends,
depending on which one the presentation viewer
activates. (If the viewer selects btn_a, the text
object will show for 25 seconds; if the viewer
selects btn_b, the video object will play for that
object’s intrinsic duration, whatever that is.) All
the while, the background music keeps repeating.

SMIL 2.0 timing and synchronization
The timing and synchronization functional

group represents the core of SMIL 2.0 functional-
ity. The group consists of 19 modules, each of
which defines a collection of XML elements and
attributes that control some timing aspect.

We’ve already discussed the three basic SMIL
2.0 timing elements seq, par, and excl. Each of
these elements form parent timing containers in
which we can place media objects or other timing
containers. For any content within a container
(whether a media object or structure container),
these are the primary issues:

❚ When does the element begin?

❚ How long is it active?

❚ What happens to it when it’s no longer active?

❚ Other than strict temporal, are there other
conditions that cause an element to end?

We answer these questions by specifying a set of
attribute values on either the parent time con-
tainer or any of its children. SMIL 2.0 has an
extensive set of attributes to control timing, most
of which carry sane defaults so that we can easily
accomplish basic timing and synchronization
operations.

Figure 3 gives the basic collection of timing
and synchronization attributes. Note that not all
the SMIL 2.0 profiles support all the attributes,
and the syntax of defining and setting the
attribute values can vary, but the core functional-
ity of timing, extended activation control, object
persistence, and repeating element control are rea-
sonably universal. A design objective of SMIL 2.0
was that each attribute should have a well-defined
semantic that remains constant across profiles.

Begin, end, and dur
The begin and end attributes are similar in

terms of syntax and semantics. The primary dif-
ferences between these attributes in SMIL 1.0 and
SMIL 2.0 is that SMIL 2.0 lets us specify multiple
values for begin and end. (Figure 2 shows an exam-
ple of this.) The first satisfied begin/end value will
cause a corresponding element to start or end. It’s
possible to mix both scheduled and event-based
activation/termination in one attribute. For exam-
ple, begin=“3s;button.activateEvent” will
cause the associated element to start either at 3 sec-
onds after the default time at which the element
would otherwise be able to start, or when the
activateEvent event associated with another
element with an ID of button occurs (typically via
a mouse click). (The default begin time varies with

85

O
cto

b
er–D

ecem
b

er 2001
Timing control
 - begin

 - end

 - dur

Extended activation
 - endsync

 - min

 - max

Object persistence
 - fill

Repeating control
 - repeatCount

 - repeatDur

Synchronization
 - syncBehavior

 - syncTolerance

 - syncMaster

XML timing integration
 - timeContainer

 - timeAction

Figure 3. Primary

SMIL 2.0 timing and

synchronization

attributes.

the parent time container. For a par and excl, it’s
when the container starts. For a seq, it’s when the
previous element in the seq ends or the first child
element starts.)

Once started, an element will have a certain
duration, which we can determine in several
ways (see Figure 4). Generally, so-called discrete
media (media without an inherent notion of
time, such as images or a page of text) have a
default 0-second duration, and continuous
media (media with an inherent notion of dura-
tion, such as an audio or video object) use that
inherent duration as a default. (Some implemen-
tations of SMIL 1.0 used 5 seconds for the default
duration of a discrete-media item. All SMIL 2.0
implementations should use the real default
value of 0.)

An object with a 0-second duration wouldn’t
ordinarily be visible during a presentation. Such
objects can be displayed if the fill attribute is set
to a value of “freeze.” A frozen object is displayed
after the end of its active duration until its parent
time container ends. For discrete media, this will
be the image or text, for continuous media, it will
be the last frame or sample. Consider this:

<par dur=“10s”>

<img begin=“3.5s” fill=“freeze”

src=“...” />

</par>

It will display an image 3.5 seconds after the par-
ent par begins. The object’s active duration will be
0 seconds, but the object will remain visible for
6.5 seconds (until the parent par ends). Two fill

values define a render-
ing duration that
extends beyond the
parent: transition and
hold.

As in SMIL 1.0, if a
par has multiple chil-
dren active, it can spec-
ify that the entire par
ends when the first
child ends, the last
child ends, or a named
child ends. We do this
with the endsync

attribute. (The default
is endsync=“last”.)

SMIL 2.0 has two
new attributes that pro-
vide extra duration

control: min and max. We can use these attributes,
which developed out of the SMIL 2.0 and MPEG-
4 integration work, to define a lower or upper
bound on the active duration, regardless of that
element’s timing characteristics.

What goes around, comes around
The default behavior of all elements is that

they play once, for either an implicit or explicit
duration. The SMIL 2.0 repeatCount attribute
lets an iteration factor be defined that acts as a
multiplier of the object’s simple duration. We can
use a special value indefinite to specify that an
element repeat continually until the parent time
container ends. (Although it’s tempting to define
this as forever, this isn’t correct: the parent time
container defines the context of indefinite.) The
repeatDur attribute defines a duration for all the
repeated iterations.

Synchronization behavior
In a perfect world, a SMIL 2.0 player would per-

fectly implement all the defined timing in a spec-
ification. Unfortunately, the world is imperfect
and unpredictable. To provide some measure of
control in the face of unpredictably, SMIL 2.0 pro-
vides three high-level synchronization control
attributes:

❚ syncBehavior lets a presentation define
whether there can be slippage in implement-
ing the presentation’s composite timeline,

❚ syncTolerance defines how much slip is
allowed, and

86

IE
EE

 M
ul

ti
M

ed
ia

Standards

<audio src="x.rm" />

repeatCount="2" fill="freeze" />

<audio src="x.rm" dur="6s" />

<audio src="x.rm" dur="6s"

<audio src="x.rm" dur="6s"

Inherent duration

Simple duration

Active duration

Rendered duration

repeatCount="2" />

t

Figure 4. Various SMIL 2.0 duration concepts. (a) The inherent duration is the duration of the media

object, if any. In this example, the inherent duration is 4 seconds. (b) The simple duration is the inherent

duration modified by the dur attribute. (c) The active duration is the simple duration modified by the

repeatCount (and repeatDur) attributes. (d) The perceived duration is an element’s visual behavior after

its active duration and before its parent time container ends.

❚ syncMaster lets a particular element become
the master timebase against which all others
are measured.

XML integration
When used in a native SMIL 2.0 document

(one in which the outer XML tag is <smil>), the
nature and meaning of various timing elements is
clear. When integrating SMIL timing into other
XML languages, we require a mechanism to iden-
tify timing containers. The SMIL 2.0 specification
does this using the timeContainer and timeAc-
tion attributes.

Events and hyperlinking
In the normal course of processing, a SMIL 2.0

document’s activation hierarchy determines the
rendering of document elements. The user can
influence the elements selected by using SMIL 2.0
events. The event architecture lets document com-
ponents that are waiting be activated or terminat-
ed to actually start or stop. SMIL 2.0 allows several
uses of events, but the most important new seman-
tic in the language is the combination of events and
the begin and end attributes. In further combina-
tion with the excl element, events provide a pow-
erful mechanism for conditional content activation.

SMIL 2.0 also supports a rich hyperlinking
architecture. Unlike links in HTML or XHTML,
the fundamental concept of the SMIL link is that
it models a temporal seek in a presentation.
Rather than simply activating a target element,
the target play state that is activated is identical to
the state that the presentation would have been
in if the target point had been arrived at naturally.
(One exception is that all event-based activation
is ignored.) This means that all nodes temporally
between the link’s source and destination must be
evaluated to see if they would have contributed to
the final target play state. The temporal seeking
and activation facility allows polished presenta-
tion construction, but its implementation in the
player isn’t for the faint of heart.

Content control elements and attributes
One of the major innovations of SMIL is sup-

port for conditional content via the switch ele-
ment:

<switch>

<video src=“...”

systemBitrate=“115200”/>

<seq systemBitrate=“57344”>

...

</seq>

<text src=“desc.html” dur=“30s”/>

</switch>

In this fragment, a video object is rendered if the
system bit rate (actual or configured) is set at 112
Kbytes or above. If the bit rate is 56 Kbytes or above,
but below 112 Kbytes, a player shows a sequence of
images instead. If no other element had been select-
ed in the switch, a player shows a text object.

One of the SMIL 1.0 switch element’s limita-
tions was that it only allowed selection based on
a predefined list of system attributes. SMIL 2.0
extends this notion with a user-defined set of test
attributes: custom test attributes. The author
can define the custom test attributes, and the
user can select them directly or indirectly via the
player. SMIL 2.0 also lets test attributes be used in-
line—that is, outside the switch element. Any
media object reference containing a system or
custom test attribute will be evaluated as if it
were wrapped into a single-element switch.

To a first approximation, both the event mech-
anism and the content control facilities provide a
means for dynamically selecting objects in a pre-
sentation. The basic difference between these
facilities is that the event mechanism works on
objects that the SMIL 2.0 scheduler recognizes,
while the content control facility determines
which object the scheduler gets to evaluate. The
actual selection process associated with the con-
ditional control primitives can be static or dynam-
ic. That is, the selection can be done at parse time
(when the document is loaded) or at each itera-
tion through the document. The specific selection
policy is a property of the SMIL player.

Transitions and animation
SMIL 2.0 significantly extends the facilities

available for performing local operations on media
objects in a document. Two of the most visible of
these are support for transitions and animation.
SMIL’s transition support allows a set of basic tran-
sitions to be defined as part of the SMIL head ele-
ment and then to instance one of the available
transition types as an input or output transition on
a media object. For example, consider the SMIL 2.0
fragment in Figure 5 (next page). We can apply
transitions to all visual media or collections of
media. Each transition can have certain timing
properties (duration) and other transition-specific
properties (direction).

87

O
cto

b
er–D

ecem
b

er 2001

Animation in SMIL 2.0 comes in two flavors.
First, some animations apply to attributes and ele-
ments in the SMIL presentation. This includes ani-
mating the position of a rendering region or a
background color. A second type of animation
support is the SMIL 2.0 animation specification,
which gives generalized temporal animation sup-
port for integration into XML languages.

Layout
Unlike HTML, which uses an indirect layout

model via cascading style sheets, SMIL also sup-
ports a direct layout model for managing a pre-
sentation’s visual and audio rendering space. In
SMIL 2.0, the SMIL basic layout mechanism is
supported with elements and attributes that lets
users specify layout as a hierarchy of rendering
regions and support multiple top-level presenta-
tion windows. Supporting hierarchical layout is
especially important when integrating animation
into a presentation. We can move content that is
logically grouped together in concert by animat-
ing the common parent region’s position. Multi-
ple top-level windows let a single presentation
segment control and render operations in differ-
ent parts of the screen in a coordinated manner.

Another enhancement to SMIL 2.0 layout is
the support for subregion positioning. This facili-
ty lets users place an object at a particular (X, Y)
offset within a region or aligned to a registration
point. (In SMIL 1.0, we had to place all objects at
a region’s top left corner.) The placement occurs
in-line, as part of the media object reference. SMIL
2.0 also supports an alignment mechanism for
content in regions. This lets us center a set of
images of varying size at a specific point in a
region. SMIL 2.0 also lets multiple objects be
active in a region simultaneously, relaxing a
restriction from SMIL 1.0.

Conclusion
There are several places to obtain SMIL 2.0

players. The W3C maintains a Web site with links
to available players, editors, and other tools (see
http://www.w3.org/AudioVideo/.) The facilities
available in SMIL, combined with the increasing
availability of connection bandwidth, provide
authors with a new toolbox of presentation con-
trol primitives. The diversity of expected future
delivery environments (such as broadband, con-
ventional modem, and wireless) demand such a
toolbox so that we can build reusable and tailored
presentations.

In part 2 of this article, we’ll look at how we
can use SMIL 2.0’s features to build various pre-
sentations for multiple target platforms, includ-
ing Microsoft’s IE-6, Real’s new RealONE player,
and Oratrix’s Grins environment. MM

References
1. J. Ayers et al., Synchronized Multimedia Integration

Language (SMIL) 2.0, World Wide Web Consortium

Recommendation, Aug. 2001, http://www.w3.org/

TR/2001/REC-smil20-20010807/.

2. D.C.A. Bulterman et al., “GRiNS: A GRaphical INter-

face for Creating and Playing SMIL Documents,”

Proc. 7th Int’l World Wide Web Conf. (WWW7), Elsevi-

er Science Publishers, Amsterdam, 1998.

3. R. Koenen, ed., ISO/IEC JTC1/SC29/WG11, Overview

of the MPEG-4 Standard, Int’l Organization for Stan-

dardization, Geneva, Mar. 2001.

4. M. Kim et al., “eXtensible MPEG-4 Textual Format,”

contribution to ISO-IEC JTC1/SC29/WG11

MPEG00/6110, Int’l Organization for Standardiza-

tion, Geneva, May 2000.

5. Dynamic HTML in Netscape Communicator, Netscape

Corp., http://developer.netscape.com/docs/manuals/

communicator/dynhtml, 1997.

6. D. Newman, P. Schmitz, and A. Patterson,

“XHTML+SMIL Profile,” W3C Working Draft, World

Wide Web Consortium, Aug. 2001, http://www.

w3.org/TR/2001/WD-XHTMLplusSMIL-20010807/.

7. L. Hardman, D.C.A. Bulterman, and G. van Rossum,

“Structured Multimedia Authoring,” Proc. ACM Multi-

media 93, ACM Press, New York, 1993, pp. 283-290.

Readers may contact Bulterman at Oratrix Development,

Amsterdam, The Netherlands, email Dick.Bulterman@

oratrix.com.

Contact Standards editor Peiya Liu, Siemens Corporate

Research, 755 College Rd. East, Princeton, NJ 08540, email

pliu@scr.siemens.com.

88

IE
EE

 M
ul

ti
M

ed
ia

Standards

<?xml version="1.0" encoding="ISO-8859-1"?>

<smil xmlns="http://www.w3.org/SMIL20/Language">

 <head>

 <layout>

 ...

 </layout>

 <transition id="fade" type="fade" dur=î1sî/>

 <transition id="push" type="pushWipe" dur=î0.5sî/>

 </head>

 <body>

 ...

 ...

 <video src="..." transOut="push"/>

 ...

 </body>

</smil>

Figure 5. Transitions

architecture in SMIL

2.0. We can define the

transitions in the head

section and reference

them in the body section

as either input or

output transitions.

