
The Web

Week 10
LBSC 671

Creating Information Infrastructures

Virtual Private Networks

Intranet

Intranet

a secure private network over the public Internet

Public Internet

virtual “leased line”

Tonight

• Learn to create a Web page

• Think about what the Web “is”

• Talk conceptually about databases

Internet ≠ Web

• Internet: collection of global networks

• Web: way of managing information exchange

• There are many other uses for the Internet
– File transfer (FTP)
– Email (SMTP, POP, IMAP)

Remote
Sever

The World-Wide Web

Send Request

Requested Page

Fetch Page

Proxy Server

Local copy of
Page requested My

Browser

Internet

HTML
(data/display)

Internet
communication

protocols

RTSP FTP Email

Web
Server

HTTP
(transfer)

File System

URL
(e.g.,http://www.foo.org/snarf.html)

HTML
HTTP
URL

“The Web”

Web Standards

• HTML
– How to write and interpret the information

• URL
– Where to find it

• HTTP
– How to get it

Uniform Resource Locator (URL)
• Uniquely identify Web pages

http://www.glue.umd.edu:80/~oard/teaching.html

Domain name

Path

File name

Port Protocol

HyperText Markup Language (HTML)

• Simple document structure language for Web

• Advantages
– Adapts easily to different display capabilities
– Widely available display software (browsers)

• Disadvantages

– Does not directly control layout

“Hello World” HTML
<html>
<head>
<title>Hello World!</title>
</head>

<body>

<p>Hello world! This is my first webpage!</p>

</body>
</html>

This is the header

This is the actual content of the HTML document

Hands On:
Learning HTML From Examples

• Use Internet Explorer to find a page you like
– http://terpconnect.umd.edu/~oard

• On the “View” menu select “Source” (in IE)
– Opens a notepad window with the source

• Compare HTML source with the Web page
– Observe how each effect is achieved

Hands On: “Adopt” a Web Page
• Modify the HTML source using notepad

– For example, change the page to yours

• Save the HTML source somewhere
– In the “File” menu, select “Save As”
– Put the name in quotes (e.g., “test.html”)

• FTP it to your ../pub directory on terpconnect

• View it
– http://terpconnect.umd.edu/~(yourlogin)/test.html

Tips

• Edit files on your own machine
– Upload when you’re happy

• Save early, save often!
• Reload browser to see changes
• File naming

– Don’t use spaces
– Punctuation matters

What’s a Document?

• Content
• Structure

– Logical, Physical
• Appearance

– Cascading Style Sheets
• Behavior

– JavaScript

HTML Document Structure

• “Tags” mark structure
– <html>a document</html>
– an ordered list
– <i>something in italics</i>

• Tag name in angle brackets <>
– Not case sensitive (unlike XML)

• Open/Close pairs
– Close tag is sometimes optional (unlike XML)

Logical Structure Tags

• Head
– Title

• Body
– Headers: <h1> <h2> <h3> <h4> <h5>
– Lists: , (can be nested)
– Paragraphs:<p>
– Definitions: <dt><dd>
– Tables: <table> <tr> <td> </td> </tr> </table>
– Role: <cite>, <address>, , …

Physical Structure Tags

• Bold:
• Italics: <i></i>
• Typeface:
• Size:
• Color:

(Hyper)Links
<html>
<head>
<title>Hello World!</title>
</head>
<body>
<p>Hello world! This is my first webpage!</p>
<p>Click here for another page.</p>
</body>
</html>

<html>
<head>
<title>Another page</title>
</head>
<body>
<p>This is another page.</p>
</body>
</html>

index.html

test.html

Hypertext “Anchors”
• Internal anchors: somewhere on the same page

– Students
• Links to: Student Information

• External anchors: to another page
– iSchool
– email papers

• URL may be complete, or relative to current page
– 2

• File name (in URL) is case sensitive (on Unix servers)
– Protocol and domain name are not case sensitive

Images
• or

–
– SRC: can be url or path/file
– ALT: a text string
– ALIGN: position of the image
– WIDTH and HEIGHT: size of the image

• Can use as anchor:
–

• Example:
– http://www.umiacs.umd.edu/~daqingd/Image-Alignment.html

Tables

eenie

mennie

miney

mo

catch

a tiger

by

the

toe

<table>

</table>

<tr>

<tr>

<tr>

</tr>

</tr>

</tr>

<td> </td> <td> </td> <td> </td>

<td> </td> <td> </td> <td> </td>

<td> </td> <td> </td> <td> </td>

Table Example
<table align=“center”>
<caption align=“right”>The caption</caption>
 < tr align=“LEFT”>
 <th> Header1 </th>
 <th> Header2</th>
 </tr>
 <tr><td>first row, first item </td>
 <td>first row, second item</td></tr>
 < tr><td>second row, first item</td>
 <td>second row, second item</td></tr>
</table>

XHTML: Cleaning up HTML
<?xml version="1.0" encoding="iso-8859-1"?>
<html xmlns="http://www.w3.org/TR/xhtml1" >
<head>
 <title> Title of text XHTML Document </title>
</head>
<body>
<div class="myDiv">
 <h1> Heading of Page </h1>
 <p> here is a paragraph of text. I will include inside this paragraph
 a bunch of wonky text so that it looks fancy. </p>
 <p>Here is another paragraph with inline emphasized
 text, and absolutely no sense of humor. </p>
 <p>And another paragraph, this one with an <img src="image.gif"
 alt="waste of time" /> image, and a
 line break. </p>
</div>
</body></html>

Defining Blocks of Text
• <div> … </div>

– Named region
– Implies a paragraph break,
– Can include multiple paragraphs

• <p> … </p>
– Individual paragraph

• …
– Any region
– Does not create a paragraph break

Cascading Style Sheets (CSS)

• Separate content and structure from appearance

• Rules “cascade” from broad to narrow:
– Browser default
– External style sheet
– Internal style sheet
– Inline style

Basics of CSS
• Basic syntax:

• Example:

 Causes
– Font to be center-aligned
– Font to be Arial and black

selector {property: value}

HTML tag you want to modify…
The property you want to change…

The value you want the property to take

p { text-align: center;
 color: black;
 font-family: arial }

Different Ways of Using CSS
• Inline style:

– Causes only this tag to have the desired
properties

• Internal stylesheet:
– Causes all tags to have the desired properties

<p style="font-family:arial; color:blue“>…</p>

…
<head>…
<style type="text/css" >
 p { font-family:arial; color:blue}
</style>
</head>
<body>
<p>…</p>
…

Customizing Classes

• Ability to define customized styles for
standard HTML tags:

…
<head>…
<style type="text/css">
 p.style1 { font-family:arial; color:blue}
 p.style2 { font-family:serif; color:red}
</style>
</head>
<body>
<p class=“style1“>…</p>
<p class=“style2“>…</p>
…

External Style Sheets
• Store formatting metadata in a separate file

…
<head>…
<link rel="stylesheet" href="mystyle.css" type="text/css" />
</head>
<body>
<p class=“style1">…</p>
<p class=“style2">…</p>
…

p.style1 { font-family:arial; color:blue}
p.style2 { font-family:serif; color:red}

mystyle.css

Programming for the Web
• JavaScript [Client-side]

– Server embeds a program in HTML
– Browser runs the program when it gets to it

• PHP “Common Gateway Interface” [Server-side]
– HTML form sends field values to the server
– Server passes field values to a program
– Program generates a Web page as a response

• Ajax
– Server sends browser a generic program to run
– Browser and server programs exchange XML-encoded data

JavaScript
<HTML>
<HEAD>
 <TITLE>My first script</TITLE>
</HEAD>
<BODY BGCOLOR=WHITE>
<H1>
 <SCRIPT LANGUAGE=JAVASCRIPT TYPE="TEXT/JAVASCRIPT">
 document.write("Hello, world!")
 </SCRIPT>
</H1>
</BODY></HTML>

HTML Editors
• Several are available

– Dreamweaver
– Microsoft Word (File->”Edit with MS Word” in IE)

• You may still need to edit the HTML file
– Some editors use browser-specific features
– Some HTML features may be unavailable
– File names may be butchered when you upload

• Verbose HTML can make hand-editing difficult

What is the Web?

• Protocols
– HTTP, HTML, or URL?

• Perspective
– Content or behavior?

• Content
– Static, dynamic or streaming?

• Access
– Public, protected, or internal?

Why is there a Web?
• Affordable storage

– 300,000 words/$ in 1995
• Adequate backbone capacity

– 25,000 simultaneous transfers in 1995
• Adequate “last mile” bandwidth

– 1 second/screen in 1995
• Display capability

– 10% of US population in 1995
• Effective search capabilities

– Lycos and Yahoo were started in 1995

64%
5%

4%

6%

2%

8%

2%
4%

5% 0%

33%

28%

9%

6%

5%

5%

4%

4%

4% 2%

English

Chinese

Spanish

Japanese

Portuguese

German

Arabic

French

Russian

Korean

Global Internet Users

Most Widely-Spoken Languages

0

100

200

300

400

500

600

700

800

900

1000

Chine
se

Eng
lish

Spa
nis

h

Russ
ian

Frenc
h

Port
ug

ues
e

Arab
ic

Ben
ga

li

Hindi/
Urdu

Ja
pa

nes
e

Germ
an

Nu
m

be
r o

f S
pe

ak
er

s
(m

ill
io

ns
) Secondary

Primary

Source: Ethnologue (SIL), 1999

Global Trade

Source: World Trade Organization 2010 Annual Report

Databases
• Database

– Collection of data, organized to support access
– Models some aspects of reality

• DataBase Management System (DBMS)
– Software to create and access databases

• Relational Algebra
– Special-purpose programming language

Structured Information
• Field An “atomic” unit of data

– number, string, true/false, …

• Record A collection of related fields

• Table A collection of related records
– Each record is one row in the table
– Each field is one column in the table

• Primary Key The field that identifies a record
– Values of a primary key must be unique

• Database A collection of tables

A Simple Example

primary key

Registrar Example

• Which students are in which courses?

• What do we need to know about the students?
– first name, last name, email, department

• What do we need to know about the courses?

– course ID, description, enrolled students, grades

A “Flat File” Solution

Discussion Topic
Why is this a bad approach?

Student ID Last Name First Name Department IDDepartmentCourse ID Course description Grades email
1 Arrows John EE EE lbsc690 Information Technology 90 jarrows@wam
1 Arrows John EE Elec Engin ee750 Communication 95 ja_2002@yahoo
2 Peters Kathy HIST HIST lbsc690 Informatino Technology 95 kpeters2@wam
2 Peters Kathy HIST history hist405 American History 80 kpeters2@wma
3 Smith Chris HIST history hist405 American History 90 smith2002@glue
4 Smith John CLIS Info Sci lbsc690 Information Technology 98 js03@wam

Goals of “Normalization”
• Save space

– Save each fact only once

• More rapid updates
– Every fact only needs to be updated once

• More rapid search
– Finding something once is good enough

• Avoid inconsistency
– Changing data once changes it everywhere

Relational Algebra
• Tables represent “relations”

– Course, course description
– Name, email address, department

• Named fields represent “attributes”

• Each row in the table is called a “tuple”
– The order of the rows is not important

• Queries specify desired conditions
– The DBMS then finds data that satisfies them

A Normalized Relational Database

Department ID Department
EE Electronic Engineering
HIST History
CLIS Information Stuides

Course ID Course Description
lbsc690 Information Technology
ee750 Communication
hist405 American History

Student ID Course ID Grades
1 lbsc690 90
1 ee750 95
2 lbsc690 95
2 hist405 80
3 hist405 90
4 lbsc690 98

Student ID Last Name First Name Department ID email
1 Arrows John EE jarrows@wam
2 Peters Kathy HIST kpeters2@wam
3 Smith Chris HIST smith2002@glue
4 Smith John CLIS js03@wam

Student Table

Department Table Course Table

Enrollment Table

Approaches to Normalization

• For simple problems (like the homework)
– Start with “binary relationships”

• Pairs of fields that are related
– Group together wherever possible
– Add keys where necessary

• For more complicated problems
– Entity relationship modeling (LBSC 670)

Example of Join

Student ID Last Name First Name Department ID email
1 Arrows John EE jarrows@wam
2 Peters Kathy HIST kpeters2@wam
3 Smith Chris HIST smith2002@glue
4 Smith John CLIS js03@wam

Student Table
Department ID Department
EE Electronic Engineering
HIST History
CLIS Information Stuides

Department Table

Student ID Last Name First Name Department IDDepartment email
1 Arrows John EE Electronic Engineering jarrows@wam
2 Peters Kathy HIST History kpeters2@wam
3 Smith Chris HIST History smith2002@glue
4 Smith John CLIS Information Stuides js03@wam

“Joined” Table

Problems with Join

• Data modeling for join is complex
– Useful to start with E-R modeling

• Join are expensive to compute
– Both in time and storage space

• But it is joins that make databases relational
– Projection and restriction also used in flat files

Some Lingo

• “Primary Key” uniquely identifies a record
– e.g. student ID in the student table

• “Compound” primary key
– Synthesize a primary key with a combination of fields
– e.g., Student ID + Course ID in the enrollment table

• “Foreign Key” is primary key in the other table
– Note: it need not be unique in this table

Project

Student ID Last Name First Name Department IDDepartment email
1 Arrows John EE Electronic Engineering jarrows@wam
2 Peters Kathy HIST History kpeters2@wam
3 Smith Chris HIST History smith2002@glue
4 Smith John CLIS Information Stuides js03@wam

New Table

Student ID Department
1 Electronic Engineering
2 History
3 History
4 Information Stuides

SELECT Student ID, Department

Restrict

Student ID Last Name First Name Department IDDepartment email
2 Peters Kathy HIST History kpeters2@wam
3 Smith Chris HIST History smith2002@glue

Student ID Last Name First Name Department IDDepartment email
1 Arrows John EE Electronic Engineering jarrows@wam
2 Peters Kathy HIST History kpeters2@wam
3 Smith Chris HIST History smith2002@glue
4 Smith John CLIS Information Stuides js03@wam

New Table

WHERE Department ID = “HIST”

Entity-Relationship Diagrams

• Graphical visualization of the data model

• Entities are captured in boxes

• Relationships are captured using arrows

Registrar ER Diagram

Enrollment
Student
Course
Grade
…

Student
Student ID
First name
Last name
Department
E-mail
…

Course
Course ID
Course Name
…

Department
Department ID
Department Name
…

has

has associated with

Getting Started with E-R Modeling
• What questions must you answer?

• What data is needed to generate the answers?
– Entities

• Attributes of those entities
– Relationships

• Nature of those relationships

• How will the user interact with the system?
– Relating the question to the available data
– Expressing the answer in a useful form

“Project Team” E-R Example

student team

implement-role

member-of

project

creates

manage-role

php-project ajax-project

d

1

1

M

M

1

1

human

client needs 1 M

Components of E-R Diagrams
• Entities

– Types
• Subtypes (disjoint / overlapping)

– Attributes
• Mandatory / optional

– Identifier
• Relationships

– Cardinality
– Existence
– Degree

Types of Relationships

1-to-1 1-to-Many Many-to-Many

Making Tables from E-R Diagrams

• Pick a primary key for each entity
• Build the tables

– One per entity
– Plus one per M:M relationship
– Choose terse but memorable table and field names

• Check for parsimonious representation
– Relational “normalization”
– Redundant storage of computable values

• Implement using a DBMS

Normalization
• 1NF: Single-valued indivisible (atomic) attributes

– Split “Doug Oard” to two attributes as (“Doug”, “Oard”)
– Model M:M implement-role relationship with a table

• 2NF: Attributes depend on complete primary key
– (id, impl-role, name)->(id, name)+(id, impl-role)

• 3NF: Attributes depend directly on primary key
– (id, addr, city, state, zip)->(id, addr, zip)+(zip, city, state)

• 4NF: Divide independent M:M tables
– (id, role, courses) -> (id, role) + (id, courses)

• 5NF: Don’t enumerate derivable combinations

Normalized Table Structure

• Persons: id, fname, lname, userid, password
• Contacts: id, ctype, cstring
• Ctlabels: ctype, string
• Students: id, team, mrole
• Iroles: id, irole
• Rlabels: role, string
• Projects: team, client, pstring

A More Complex ER Diagram

cadastral: a public record, survey, or map of the value, extent, and
ownership of land as a basis of taxation.

Source: US Dept. Interior Bureau of Land Management,
Federal Geographic Data Committee Cadastral Subcommittee
http://www.fairview-industries.com/standardmodule/cad-erd.htm

http://www.fairview-industries.com/standardmodule/cad-erd.htm
http://www.fairview-industries.com/standardmodule/cad-erd.htm
http://www.fairview-industries.com/standardmodule/cad-erd.htm
http://www.fairview-industries.com/standardmodule/cad-erd.htm
http://www.fairview-industries.com/standardmodule/cad-erd.htm

Key Ideas

• Databases are a good choice when you have
– Lots of data
– A problem that contains inherent relationships

• Design before you implement
– This is just another type of programming
– The mythical person-month applies!

• Join is the most important concept
– Project and restrict just remove undesired stuff

Before You Go

 On a sheet of paper, answer the following
(ungraded) question (no names, please):

 What was the muddiest point in
today’s class?

	The Web
	Virtual Private Networks
	Tonight
	Internet Web
	The World-Wide Web
	Slide Number 6
	Web Standards
	Uniform Resource Locator (URL)
	HyperText Markup Language (HTML)
	“Hello World” HTML
	Hands On:�Learning HTML From Examples
	Hands On: “Adopt” a Web Page
	Tips
	What’s a Document?
	HTML Document Structure
	Logical Structure Tags
	Physical Structure Tags
	(Hyper)Links
	Hypertext “Anchors”
	Images
	Tables
	Table Example
	XHTML: Cleaning up HTML
	Defining Blocks of Text
	Cascading Style Sheets (CSS)
	Basics of CSS
	Different Ways of Using CSS
	Customizing Classes
	External Style Sheets
	Programming for the Web
	JavaScript
	HTML Editors
	What is the Web?
	Why is there a Web?
	Slide Number 35
	Most Widely-Spoken Languages
	Global Trade
	Databases
	Structured Information
	A Simple Example
	Registrar Example
	A “Flat File” Solution
	Goals of “Normalization”
	Relational Algebra
	A Normalized Relational Database
	Approaches to Normalization
	Example of Join
	Problems with Join
	Some Lingo
	Project
	Restrict
	Entity-Relationship Diagrams
	Registrar ER Diagram
	Getting Started with E-R Modeling
	“Project Team” E-R Example
	Components of E-R Diagrams
	Types of Relationships
	Making Tables from E-R Diagrams
	Normalization
	Normalized Table Structure
	A More Complex ER Diagram
	Key Ideas
	Before You Go

