

College of Information Studies

University of Maryland Hornbake Library Building College Park, MD 20742-4345

Storage and Preservation

Week 3 LBSC 671 Creating Information Infrastructures

Physical Storage

- Segregate by:
 - Users (e.g., Chemistry library)
 - Type (e.g., audiovisual materials)
 - Usage frequency (e.g., offsite storage)
 - Size (e.g., folios)
- Arrange in a way that facilitates access
 Topical shelf order (e.g., Dewey Decimal System)
- Foster preservation
 - Environment (temperature, humidity, light)
 - Access controls (closed stacks, gloves, ...)

High-Density Shelving

http://www.kmhsystems.com/high-density-storage.html

Compact Storage Robot

Kyushu University, Japan

Closed Stacks

University of Education, Ghana

Preservation

c. 3000 BCE

Organic Decay

- Rag paper: 300-2,000 years
- Acidic paper: 25-50 years
- Acetate: 40 years
- Nitrate: 40-1-00 years

Image Permanence Institute, 2012

Threats to Physical Collections

- Organic decay
- Intentional actions
 - Pilferage and vandalism
 - Official actions
- Disasters
 - Accidents
 - Fire, sprinkler malfunction, ...
 - Natural disasters
 - Flood, tornado, earthquake, ...
 - Armed conflict

Disaster Mitigation Examples

- Flood:
 - Decide quickly what to freeze
 - And know where you can vacuum freeze dry
 - Air dry or dehumidify the rest
 - Immerse wet+muddy tape or film in water
 - Then air dry or dehumidify
 - Replace wet archival boxes immediately
- Fire:
 - Handle as fragile, wrap in clean paper
 - Pack between cardboard to stiffen

http://matrix.msu.edu/~disaster/balcplan.php

Digital Preservation

- Preservation of born-digital materials
 - Appearance
 - Behavior
- Digitization for preservation
 - Scanning (paper, microfilm)
 - Audio digitization
 - Video digitization
 - Volumetric imaging
 - Digital holography, computational tomography

Binary Data Representation

Example: American Standard Code for Information Interchange (ASCII)

01000001	= A	01100001	= a
01000010	= B	01100010	= b
01000011	= C	01100011	= C
01000100	= D	01100100	= d
01000101	= E	01100101	= e
01000110	= F	01100110	= f
01000111	= G	01100111	= g
01001000	= H	01101000	= h
01001001	=	01101001	= i
01001010	= J	01101010	= j
01001011	= K	01101011	= k
01001100	= L	01101100	=
01001101	= M	01101101	= m
01001110	= N	01101110	= n
01001111	= O	01101111	= 0
01010000	= P	01110000	= p
01010001	= Q	01110001	= q
	•		-

Units of Size

Unit	Abbreviation	Size (bytes)
bit	b	1/8
byte	В	1
kilobyte	KB	$2^{10} = 1024$
megabyte	MB	$2^{20} = 1,048,576$
gigabyte	GB	$2^{30} = 1,073,741,824$
terabyte	ТВ	$2^{40} = 1,099,511,627,776$
petabyte	PB	$2^{50} = 1,125,899,906,842,624$

Nothing new...

Georges Seurat, A Sunday Afternoon on the Island of La Grande Jatte

Basic Audio Coding

Sample at twice the highest frequency
- 8 bits or 16 bits per sample

- Speech (0-4 kHz) requires 8 kB/s
 Standard telephone channel (1-byte samples)
- Music (0-22 kHz) requires 172 kB/s
 - Standard for CD-quality audio (2-byte samples)

Frame Types

I IntraP Forward PredictedB Backward Predicted

Encode complete image, similar to JPEG Motion relative to previous I and P's Motion relative to previous & future I's & P's

Volumetric Imaging

Rotating Storage Media

- Fixed magnetic disk – Hard drives
- Removable magnetic disk
 Floppy disk
- Removable optical disc
 CD, DVD, Blu-ray

Magnetic Disk (Hard Drive)

Shelly, Cashman and Vermatt, Discovering Computers, 2004

Optical Disk Technologies

Magnetic Tape

- Tapes store data sequentially
 Fast transfer, but no practical "random access"
- Used only for low-use storage
 - Disaster recovery, offline storage

Solid-State Memory

- ROM
 - Does not require power to retain content
 - Used for "Basic Input/Output System" (BIOS)
- RAM
 - Cheap and fast, but works only while power is on
- Flash memory (Solid State Disk, memory sticks)
 - <u>Much</u> faster "random access" than rotating disk
 - On average, 10,000 times faster
 - About 10 times the cost per bit
 - Limited number of lifetime write operations (~5000)
 - But Zipf's law permits "wear leveling"

Threats to Digital Collections

- Business decisions
 - Termination of service
 - Termination of infrastructure support
 - e.g., reading Amiga files, displaying Word Perfect
- Malfunctions
 - Hardware failure, operator error, software bugs, ...
- Vandalism (hackers)
- Disasters
 - Physical risks to servers
 - Electromagnetic pulse

http://www.crashplan.com/medialifespan/

Media Migration

- What format should old tapes be converted to?
 - Newer tape
 - Rotating media
 - Solid state disks
- How often must we "refresh" these media?

Risk Management

- Redundancy drives down <u>uncorrelated</u> risk
 - Let p be the probability of loss of one copy
 - Then p*p*p is the chance of loss for 3 sites
 - Example: if p=0.01 then p*p*p=0.000001
- Two fundamental problems:
 - Unanticipated correlation
 - For example, an operating system bug
 - Underestimated "black swan" probabilities

Layered Defense

- Good storage practices
 - Offline: Media migration
 - Online: uninterruptable power, RAID, backups
- Distributed storage
 - Storage Resource Broker (SRB), LOCKSS, ...
- Air gaps
 - Interrupt unexpected correlation

Data Centers

Shared Data Center Locations

http://www.datacentermap.com/usa/datacenters.html

Data Center Electricity Use (USA)

Jonathan Koomey, Analytics Press, 2010

Digital Federal Depository Library

http://lockss-usdocs.stanford.edu

LOCKSS Distributed Repair

ITHAKA

- JSTOR digitization
 - Back runs of journals
 - Recently expanded to books

- Portico preservation
 - Centralized management, originally for journals
 - Release triggers: discontinuation, loss of access
 - Also service for books and datasets

HathiTrust

- Centralized repository for digitized books
 - Google Books digitization (via owning libraries)
 - Microsoft book search (ran from 2006-2008)
 - Internet Archive
 - Million book project, project Gutenberg, contributions, ...
 - Cooperative digitization

In Copyright

Public Domain

<u>As of August 13, 2010</u> 6,549,680 – Total volumes 1,300,896 – Public Domain 3,798,116 Book titles 153,311 Serial titles

Jeremy York, IFLA 2010

Indiana University Digitization

Table 6: Media Preservation Targets, 2013-2027

Target	Hours	Objects	% of Total Holdings
15 Years— all media types	317,000	408,000	71%
Audio	207,000	284,000	82%
Video	83,000	66,000	53%*
Film (access digitization)	27,000	58,000	69%

*IU Bloomington video holdings include a large number of non-archival, commercial VHS tapes and DVDs that circulate primarily to students. These are not included here.

Preserving Behavior

- Word processors
 - Formatting, track changes, undo deleted text
- Spreadsheets
 - Formulas, visualizations
- Databases
 - Queries, forms, derived values
- Computer-Assisted Design (CAD)
 Display, modification, manufacturing
- Software
 - Simulation, games, embedded systems, ...

Behavior Preservation Strategies

- Format migration
 - For example, convert Word Perfect to PDF

- Emulation
 - Allows running old software on newer systems

Apollo Guidance Computer Emulation

Interfaces

Run!

Defaults

Exit

Options

-Guidance Computer (AGC) software Apollo 1 Command Module O Apollo 7 Command Module Apollo 8 Command Module ○ Apollo 9 Command Module

- 🔿 Apollo 9 Lunar Module
- O Apollo 10 Command Module
- Apollo 10 Lunar Module
- Apollo 11 Command Module
- Apollo 11 Lunar Module
- Apollo 12 Command Module
- Apollo 12 Lunar Module
- Apollo 13 Command Module

Apollo 13 Lunar Module

- O Apollo 14 Command Module
- Apollo 14 Lunar Module
- Apollo 15-17 Command Module
- Apollo 15-17 Lunar Module
- O Apollo Skylab/Soyuz Command Module

Validation Suite

O Custom:

AGC Startup		
Restart program, wiping memory Restart program, preserving memory Resume from ending point of prior run Custom: Save Interface styles DSKY: Full Half "Lite" Downlink: Resume Resume Resume Full Half Half		
Use AGC/AEA debugger? AGC code:		
LM Abort Computer (AEA) software Apollo 9 (Flight Programs 3, 4) Apollo 10 (Flight Program 5) Apollo 11 (Flight Program 6) Apollo 12-14? (Flight Program 7) Apollo 15-17 (Flight Program 8) Custom:		

http://www.ibiblio.org/apollo/

An Integrated Strategy

• Delay decay of organic materials

But balance costs and benefits

- Balance quality and scale
 - Preservation: rescue at-risk collections
 - Access: Quantity has a quality all its own
- Design in diversity
 - Technologies, risk exposure, institutions
- Adequately resource the process

Before You Go!

• On a sheet of paper (no names), answer the following question:

What was the muddiest point in today's class?