
Relational Databases

Week 11

LBSC 671

Creating Information Infrastructures

Types of Relationships

1-to-11-to-ManyMany-to-Many

Project Team E-R Example

student team

implement-role

member-of

project

creates

manage-role

php-project ajax-project

d

1

M

M

1

1

1

human

client needs
M 1

Normalized Table Structure

• Persons: id, fname, lname, userid, password

• Contacts: id, ctype, cstring

• Ctlabels: ctype, string

• Students: id, team, mrole

• Iroles: id, irole

• Rlabels: role, string

• Projects: team, client, pstring

Database “Programming”

• Natural language

– Goal is ease of use

• e.g., Show me the last names of students in CLIS

– Ambiguity sometimes results in errors

• Structured Query Language (SQL)

– Consistent, unambiguous interface to any DBMS

– Simple command structure:

• e.g., SELECT Last name FROM Students WHERE Dept=CLIS

– Useful standard for inter-process communications

• Visual programming (e.g., Microsoft Access)

– Unambiguous, and easier to learn than SQL

The SELECT Command

• Project chooses columns

– Based on their label

• Restrict chooses rows

– Based on their contents

• e.g. department ID = “HIST”

• These can be specified together

– SELECT Student ID, Dept WHERE Dept = “History”

Restrict Operators

• Each SELECT contains a single WHERE

• Numeric comparison

<, >, =, <>, …

• e.g., grade<80

• Boolean operations

– e.g., Name = “John” AND Dept <> “HIST”

Using Microsoft Access

• Create a database called M:\rides.mdb

– File->New->Blank Database

• Specify the fields (columns)

– “Create a Table in Design View”

• Fill in the records (rows)

– Double-click on the icon for the table

Creating Fields

• Enter field name

– Must be unique, but only within the same table

• Select field type from a menu

– Use date/time for times

– Use text for phone numbers

• Designate primary key (right mouse button)

• Save the table

– That’s when you get to assign a table name

Entering Data

• Open the table

– Double-click on the icon

• Enter new data in the bottom row

– A new (blank) bottom row will appear

• Close the table

– No need to “save” – data is stored automatically

Building Queries

• Copy ride.mdb to your M:\ drive

• “Create Query in Design View”

– In “Queries”

• Choose two tables, Flight and Company

• Pick each field you need using the menus

– Unclick “show” to not project

– Enter a criterion to “restrict”

• Save, exit, and reselect to run the query

Some Details About Access

• Joins are automatic if field names are same

– Otherwise, drag a line between the fields

• Sort order is easy to specify

– Use the menu

• Queries form the basis for reports

– Reports give good control over layout

– Use the report wizard - the formats are complex

• Forms manage input better than raw tables

– Invalid data can be identified when input

– Graphics can be incorporated

Databases in the Real World

• Some typical database applications:

– Banking (e.g., saving/checking accounts)

– Trading (e.g., stocks)

– Airline reservations

• Characteristics:

– Lots of data

– Lots of concurrent access

– Must have fast access

– “Mission critical”

Source: Technology Review (July/August, 2008)

Database layer: 800 eight-core Linux servers running

MySQL (40 TB user data)

Caching servers: 15 million requests per second, 95%

handled by memcache (15 TB of RAM)

Database Integrity

• Registrar database must be internally consistent

– Enrolled students must have an entry in student table

– Courses must have a name

• What happens:

– When a student withdraws from the university?

– When a course is taken off the books?

Integrity Constraints

• Conditions that must always be true

– Specified when the database is designed

– Checked when the database is modified

• RDBMS ensures integrity constraints are respected

– So database contents remain faithful to real world

– Helps avoid data entry errors

Referential Integrity

• Foreign key values must exist in other table

– If not, those records cannot be joined

• Can be enforced when data is added

– Associate a primary key with each foreign key

• Helps avoid erroneous data

– Only need to ensure data quality for primary keys

Concurrency

• Thought experiment: You and your project

partner are editing the same file…

– Scenario 1: you both save it at the same time

– Scenario 2: you save first, but before it’s done

saving, your partner saves

Whose changes survive?

A) Yours B) Partner’s C) neither D) both E) ???

Concurrency Example

• Possible actions on a checking account

– Deposit check (read balance, write new balance)

– Cash check (read balance, write new balance)

• Scenario:

– Current balance: $500

– You try to deposit a $50 check and someone tries to

cash a $100 check at the same time

– Possible sequences: (what happens in each case?)

Deposit: read balance

Deposit: write balance

Cash: read balance

Cash: write balance

Deposit: read balance

Cash: read balance

Cash: write balance

Deposit: write balance

Deposit: read balance

Cash: read balance

Deposit: write balance

Cash: write balance

Database Transactions

• Transaction: sequence of grouped database actions

– e.g., transfer $500 from checking to savings

• “ACID” properties

– Atomicity

• All-or-nothing

– Consistency

• Each transaction must take the DB between consistent states.

– Isolation:

• Concurrent transactions must appear to run in isolation

– Durability

• Results of transactions must survive even if systems crash

Making Transactions

• Idea: keep a log (history) of all actions carried

out while executing transactions

– Before a change is made to the database, the

corresponding log entry is forced to a safe location

• Recovering from a crash:

– Effects of partially executed transactions are undone

– Effects of committed transactions are redone

the log

Putting the Pieces Together

Web Server

HTML

HTML

CGI

Browser

SQL Query

Results

Database

Why Database-Generated Pages?

• Remote access to a database

– Client does not need the database software

• Serve rapidly changing information

– e.g., Airline reservation systems

• Provide multiple “access points”

– By subject, by date, by author, …

• Record user responses in the database

Structured Query Language

DESCRIBE Flight;

Structured Query Language

SELECT * FROM Flight;

Structured Query Language

SELECT Company.CompanyName, Company.CompanyPhone,

Flight.Origin, Flight.DepartureTime

FROM Flight,Company

WHERE Flight.CompanyName=Company.CompanyName

AND Flight.AvailableSeats>3;

Issues to Consider

• Benefits of Databases

– Multiple views

– Data reuse

– Scalable

– Access control

• Costs of Databases

– Formal modeling

– Complex (learn, design, implement, debug)

– Brittle (relies on multiple communicating servers)

– Not crawlable

Key Ideas

• Databases are a good choice when you have

– Lots of data

– A problem that contains inherent relationships

• Design before you implement

• Join is the most important concept

– Project and restrict just remove undesired stuff

RideFinder Exercise

• Design a database to match passengers with

available rides for Spring Break

– Drivers phone in available seats

• They want to know about interested passengers

– Passengers call up looking for rides

• They want to know about available rides

• No “ride wanted” ads

– These things happen in no particular order

Exercise Goals

• Identify the tables you will need

– First decide what data you will need

• What questions will be asked?

– Then design normalized tables

• Start with binary relations if that helps

• Design the queries

– Using join, project and restrict

– What happens when a passenger calls?

– What happens when a driver calls?

Reminder: Starting E-R Modeling

• What questions must you answer?

• What data is needed to generate the answers?

– Entities

• Attributes of those entities

– Relationships

• Nature of those relationships

• How will the user interact with the system?

– Relating the question to the available data

– Expressing the answer in a useful form

Exercise Logistics

• Work in groups of 3 or 4

• Brainstorm data requirements for 5 minutes

– Do passengers care about the price?

– Do drivers care how much luggage there is?

• Develop tables and queries for 15 minutes

– Don’t get hung up on one thing too long

• Compare you answers with another group

– Should take about 5 minutes each

Making Tables from E-R Diagrams

• Pick a primary key for each entity

• Build the tables

– One per entity

– Plus one per M:M relationship

– Choose terse but memorable table and field names

• Check for parsimonious representation

– Relational “normalization”

– Redundant storage of computable values

• Implement using a DBMS

Before You Go

On a sheet of paper, answer the following

(ungraded) question (no names, please):

What was the muddiest point in

today’s class?

