N/ College of Information Studies

i ~
ﬁiﬁ 'L.E"-‘-f‘ University of Marvland Hormbake Library Building College Park, MD 20742-4343

Structured Programming

Week 3
INFM 603

Muddiest Points

 Emergent behavior of the Web

<head>...
<style type="text/css">
p.stylel { font-family:arial; color:blue}
- p.style2 { font-family:serif; color:red}
« HTML class attribute <Istyle>
</head>
<body>
<p class="stylel“>...</p>
<p class="style2“>...</p>

e The details of JavaScript

Programming In Four Parts

» Structured Programming
* Modular Programming
e Data Structures

e ODbject-Oriented Programming

Machine Language

e Everything is a binary number
— Operations

00001000 ADD
00010101 number to be added (21)
01010110 memory location to add it to (86)

Assembly Language

 Symbolic instructions and addresses

— Symbolic instruction “ADD”
— Symbolic address “SUM1”

e For Instance

Programming Languages

compiler

assembl

Ruby

PHP

Java

C++

JavaScript

Assembly Language

er

Machine Language

MOV AL,

2811000
0

0110000
1

Programming Languages

* High-level languages
— Specifies algorithms at a more abstract level
e Interpreter reads instructions, controls machine actions
— Examples: JavaScript, PHP

* Declarative languages

— Specifies desired results, but not the control flow
« System decides how best to get that result

— Examples: HTML, SQL, Excel

High level Languages

* Procedural (modular) programming
— Group Instructions into meaningful abstractions
— C, Pascal, Perl

e Object oriented programming
— Group “data” and “methods” into “objects”
— Naturally represents the world around us
— C++, Java, JavaScript, PHP, Ruby

Where does the JavaScript go?

<IDOCTYPE html>

<html>
<head>
<meta charset=utf-8 />
<title>My Title</title>
<script>

script JavaScript in the header, processed
<Iscript> before the page is loaded
<script src="code.js"> JavaScript in an external file,
</script> processed before the page is loaded
</head>
<body>
<script>

script JavaScript in the body, processed
<Iscript> as the page is loaded
</body>

</html>

Key ldeas

e State
— Data as a representation of the world

e Control flow
— Flowcharts
— Pseudocode

Variables

o Data types = things that you can operate on

e Boolean: true, false
e Number: 5, 9, 3.1415926
e String: “Hello World”

o Variables hold values of a particular data type

e Represented as symbols (e.g., X)
e Choose meaningful variable names
¢ “Camel Case”: numberOfSquaresinBattleship

o In JavaScript, var declares a variable

e var b =true; create a boolean b and set it to true
e varn=1; create a number n and setitto 1
e var s ="“hello”; create a string s and set it to “hello”

The Assignment Statement

e X =4 means “set x to 4”
— In APL, this would be written x < 4

* |n mathematics, X = X + 1 IS nonsense
— In programming, it means increment x by one
— It IS so common, we say x++ as shorthand

e X ==4 means “iIs x equal to 4?”
— If you write X = 4 for that, you will regret it!

Expressions & Statements

o Things that you can do:

o -X reverse the sign of x (negation)
e 6+5 add 6 and 5
e 21*3 multiply two values

e “Hello” + “World” concatenate two strings

o The simplest statements store results of expressions:

e X=5 set the value of x to be 5
o X+=YVy X=X+Yy
e X*=5 X=X*5
o X++ Increase value of x by 1

o In JavaScript, statements end with a semicolon (;)

Strings

var s = “Mr. Spock”

s.length is 9

s.toLowerCase() Is “mr. spock”
s.substr(3,4) Is “ Spo”
S.IndexOf(“k”) iIs 8

s.sphit(* ”) 1s [*“Mr.”, “Spock”]

s.link(http://bit.ly.CUjV) is
“Mr. Spock”

s + “Captain Kirk” Is “Mr. SpockCaptainKirk”

http://bit.ly.cujv/
http://bit.ly.cujv/

Working with Strings

e When asking input from the user, the input is
always read as a string

e To convert types you can do:

e var number = Number(stringValue);
e var stringValue = String(number);

Interaction

o Input

e vart = prompt("message here", "default");

* When asking input from the user, the input is always read as a string

e To convert types:
« var number = Number(stringValue);
 var stringValue = String(humber);

o Output

e document.writeln("message here");
e console.log("message here");
e alert ("message here");

<ldoctype html>
<html>
<head>
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8" />
<title>Input/Output</title>
</head>

<body>
<script type="text/javascript">
document.writeln("Bill Calculation System
");

var costPerCredit, numberOfCredits, tuitionCost;

/* Reading values from the user */
costPerCredit = prompt("Enter cost per credit:");
numberOfCredits = prompt("Enter number of credits:");

// Computing cost
tuitionCost = costPerCredit * numberOfCredits;

document.writeln("Tuition Cost:" + tuitionCost);
</script>
</body>
</html>

Basic Control Structures

e Sequential
— Perform instructions one after another

« Conditional
— Perform instructions contingent on something

e Repetition
— Repeat instructions until a condition Is met

1: Sequential Control Structure

Do Something Third
Something Else Thing

vara = 2;
var b = 3;
varc=a*bhb;:

2: Conditional Control Structure

truealse
If (gender == "male") {

greeting = "It's a boy!";

Do | Something } else {
Something Else greeting = "It's a girl!";
}

Note, the text in red is part of

the “template” of the
Continue conditional

Note the indentation...

Nested If-else clauses

If (expression) {
If (expression) {

L else {

}...

} else {

}

Note this is where indentation become important...

Multiple if-else clauses

If (expression) {

} ei;e If (expression) {
} ei;e If (expression) {
1 else {

}

3: Iterative Control Structure (Loop)

varn=1;
while (n <= 10) {

document.writeln(n);
{ Continue } n+-+;
}

for (varn=1; n <= 10; n++) {
[Do J document.writeln(n);

Something }

Note, the text in red is part of
the “template” of the loop

FYI: Computer scientists like to start at zero...

X ==
XIl=y
X >y
X <=y
X&&Y
x|y

Boolean Operators

true If x and y are equal [use == not =]
true If x and y are not equal

true If X Is greater than y

true If x Is smaller than or equal toy
true If both x and y are true

true If either x or y Is true

true If x 1s false

Design Tips

 Protect against unexpected values
— Test the value of all user input
— Test the value of critical function parameters

 Verify that every loop will always terminate
— Include a bailout condition, and report it

o Always test for conditions explicitly
— Trap unexpected conditions with the final else

Programming Tips

Attention to detail!
— Careful where you place that comma, semicolon, etc.

Don’t get cute with the logic or the layout
— Reflect the structure of your problem clearly
— Use standard “design patterns”

Write a little bit of code at a time
— Add some functionality, make sure it works, move on

Debug by viewing the “state” of your program
— Print values of variables using document.writeln();

Programming Tips

o Detalls are everything!
e Careful where you place that comma, semi-colon, etc.
o Write a little bit of code at a time

e Add a small new functionality, make sure it works, then move on
e Don’t try to write a large program all at once
e If it doesn’t work, revert back to previous version that worked

o Debug by outputting the state of the program

e Simulate what you think the program is doing

e Print out the value of variables using document.writeln or
console.log

e |s the value what you expected?

o Use the Chrome JavaScript console!

Documentation Tips

» Reflect your pseudocode In your code
— Use meaningful variable names

— Use functions for abstractable concepts
« And name those functions well

— Use comments to fill remaining gaps

« Add a comment to identify each revision
— Give author, date, nature of the change

» \Waste space effectively
— Use Indentation and blank lines to guide the eye

Algorithms

A finite sequence of well-defined
Instructions designed to accomplish a
certain task

 Named for the Persian mathematician
Al-Khwarizmi

Group Exercise

 Calculate the value of a $10,000 investment at the
end of each year each year from a list of annual
percentage gains or losses, and make a note In
each year for which a constant 5% interest rate
would outperform the variable rate investment.

2001 —11.9%
2002 —22.1%
2003 28.7%
2004 10.9%
2005 4.9%
2006 15.8%
2007 5.5%
2008 —37.0%
2009 26.5%

2010 15.1%

Pair Exercises

* Print every even number below 873 in the
Fibonacci series (1, 1, 2, 3,5 8, ... see Wikipedia).

e Print a 9x9 lower triangular matrix of asterisks.

* Prompt the user to enter a date (number of the
month and number of the day), check to see If the
date is valid (assume February has 28 days), and
reprompt until a valid date Is entered.

Some Math Functions

Math.abs() — Absolute value
— Example: Math.abs(-10)

Math.max() — Maximum of two values
— Example: Math.max(10, 20)

Math.sqgrt() — Square root
— Example: Math.sgrt(4)

Math.random() — Random value between 0 and less than 1
— Example: Math.random()

Constants
— Math.PI — Mathematical constant pi

One More Example

 \Write a JavaScript program that asks for a
number (n) and writes an HTML table with
two columns:

— Columnl: numbers O to n

— Column2: square root of 'i'

number L 4142135623730051
L 732050205688 7T2

Square Root Tahle

Square Root

<!doctype html>
<htmI>
<head>
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8" />
<title>Square Root Table</title>
</head>
<body>
<script type="text/javascript">
var currValue = 0;
var maximumValue;
maximumValue = Number(prompt("Enter maximum value"));

document.writeln("<table border=\"10\">");
document.writeln("<caption> Table</caption>");
document.writeln("<tr><th>Number</th><th>2*Number</th></tr>");

while (currValue <= maximumValue) {
document.writeln("<tr><td>" + currValue + "</td><td>" + currValue*2 +"</td></tr>"),
currValue = currValue + 1;

}

document.writeln("</table>");
</script>
</body>
</html>

A Look Ahead

e Modular programming
— Functions

e Data structures
— Arrays

e Object-oriented programming
— The document object
— Events

Functions

* Reusable code for complex “statements”
— Takes one or more values as “parameters”
— Returns at most one value as the “result”

function convertToCelsius(f) { var f = 60;
var celsius = 5/9 * (f-32); c = convertToCelsius(f);
return celsius;

}

¢ = convertToCelsius(60);

function convertToCelsius(f) {
var celsius = 5/9 * (f-32);
return celsius;

}

Scope of a Varlable

 |In JavaScript, var “declares” a variable
var mystery, create a variable without defining Its type
var b =true; create a boolean b and set it to true
varn =1; create an integer nand set it to 1
var s = “hello”; create a string s and set it to “hello”

e Variables declared in a function are “local”
e Same name outside function refers to different variable

 All other variables are “global”

Writing JavaScript Functions

e Convenient to put in the <head> section

— Use <I-- ... /[-->to prevent display of code
;Head>
<script language="JavaScript" type="text/javascript">
<I--

function calculate() {
var num = eval(document.input.number.value);

document.output.number.value = total,;
}
//-->
</script>
</head>

Using JavaScript with Forms

HTML.:
<form name="input" action="">
Please enter a number:
<input size="10" value="" name="number"/>
</form>
<form name="output" action=""">
The sum of all numbers up to the number above is
<input size="10" value="" name="number" readonly="true"/>
</form>

Reads in a value from the first form

JavaScript: (eval method turns it into a number)

var num = eval(document.input.number.value);

document.output.number.value = 10;

™ Changes the value in the second form

Arrays

« A set of elements
— For example, the number of days in each month

e Each element is assigned an index

— A number used to refer to that element
e For example, x[4] is the fifth element (count from zero!)

— Arrays and repetitions work naturally together

Some Useful Predefined “Methods”

e document.writeln(®...”);
— String gets rendered as HTML
— Include “
” to force a line break
o window.alert(*...”);
— String Is written verbatim as text
— Include “\n” to force a line break
e foo = window.prompt(*...”);
— String Is shown verbatim as text
— Result Is whatever string the user enters

Handling Events

e Events:
— Actions that users perform while visiting a page

» Use event handlers to response events
— Event handlers triggered by events

— Examples of event handlers in Javascript
* onMouseover: the mouse moved over an object
e onMouseout: the mouse moved off an object
« onClick: the user clicked on an object

Before You Go

On a sheet of paper, answer the following
(ungraded) question (no names, please):

What was the muddiest point In
today’s class?

	Structured Programming
	Muddiest Points
	Programming in Four Parts
	Machine Language
	Slide Number 5
	Assembly Language
	Programming Languages
	Programming Languages
	High level Languages
	Where does the JavaScript go?
	Key Ideas
	Variables
	The Assignment Statement
	Expressions & Statements
	Strings
	Working with Strings
	Interaction
	Slide Number 18
	Basic Control Structures
	1: Sequential Control Structure
	2: Conditional Control Structure
	Nested if-else clauses
	Multiple if-else clauses
	3: Iterative Control Structure (Loop)
	Boolean Operators
	Design Tips
	Programming Tips
	Programming Tips
	Documentation Tips
	Algorithms
	Group Exercise
	Pair Exercises
	Some Math Functions
	One More Example
	Slide Number 35
	A Look Ahead
	Functions
	Scope of a Variable
	Writing JavaScript Functions
	Using JavaScript with Forms
	Arrays
	Some Useful Predefined “Methods”
	Handling Events
	Before You Go

