
Structured Programming

Week 3
INFM 603

Muddiest Points

• Emergent behavior of the Web

• HTML class attribute

• The details of JavaScript

<head>…
<style type="text/css">

p.style1 { font-family:arial; color:blue}
p.style2 { font-family:serif; color:red}

</style>
</head>
<body>
<p class=“style1“>…</p>
<p class=“style2“>…</p>

Programming in Four Parts

Structured Programming

• Modular Programming

• Data Structures

• Object-Oriented Programming

Machine Language

• Everything is a binary number
– Operations
– Data

00001000 ADD
00010101 number to be added (21)
01010110 memory location to add it to (86)

00001000 00010101 01010110

Assembly Language

• Symbolic instructions and addresses
– Symbolic instruction “ADD”
– Symbolic address “SUM1”

• For instance

ADD 21, SUM1

Programming Languages

Hardware

Machine Language

Assembly Language

Ruby PHP Java C++ JavaScript

1011000
0
0110000
1

MOV AL,
61h

compiler

assembler

Programming Languages

• High-level languages
– Specifies algorithms at a more abstract level

• Interpreter reads instructions, controls machine actions
– Examples: JavaScript, PHP

• Declarative languages
– Specifies desired results, but not the control flow

• System decides how best to get that result
– Examples: HTML, SQL, Excel

High level Languages

• Procedural (modular) programming
– Group instructions into meaningful abstractions
– C, Pascal, Perl

• Object oriented programming
– Group “data” and “methods” into “objects”
– Naturally represents the world around us
– C++, Java, JavaScript, PHP, Ruby

Where does the JavaScript go?
<!DOCTYPE html>
<html>
<head>
<meta charset=utf-8 />
<title>My Title</title>

<script>
…
</script>

<script src="code.js">
</script>

</head>
<body>

<script>
…
</script>

</body>
</html>

JavaScript in the header, processed
before the page is loaded

JavaScript in an external file,
processed before the page is loaded

JavaScript in the body, processed
as the page is loaded

Key Ideas

• State
– Data as a representation of the world

• Control flow
– Flowcharts
– Pseudocode

Variables
 Data types = things that you can operate on

 Boolean: true, false
 Number: 5, 9, 3.1415926
 String: “Hello World”

 Variables hold values of a particular data type
 Represented as symbols (e.g., x)
 Choose meaningful variable names

• “Camel Case”: numberOfSquaresInBattleship

 In JavaScript, var declares a variable
 var b = true; create a boolean b and set it to true
 var n = 1; create a number n and set it to 1
 var s = “hello”; create a string s and set it to “hello”

The Assignment Statement

• x = 4 means “set x to 4”
– In APL, this would be written x 4

• In mathematics, x = x + 1 is nonsense
– In programming, it means increment x by one
– It is so common, we say x++ as shorthand

• x == 4 means “is x equal to 4?”
– If you write x = 4 for that, you will regret it!

Expressions & Statements
 Things that you can do:

 -x reverse the sign of x (negation)
 6 + 5 add 6 and 5
 2.1 * 3 multiply two values
 “Hello” + “World” concatenate two strings

 The simplest statements store results of expressions:
 x = 5 set the value of x to be 5
 x += y x = x + y
 x *= 5 x = x * 5
 x++ increase value of x by 1

 In JavaScript, statements end with a semicolon (;)

Strings

• var s = “Mr. Spock”
• s.length is 9
• s.toLowerCase() is “mr. spock”
• s.substr(3,4) is “ Spo”
• s.indexOf(“k”) is 8
• s.split(“ ”) is [“Mr.”, “Spock”]
• s.link(http://bit.ly.CUjV) is

“Mr. Spock”

• s + “Captain Kirk” is “Mr. SpockCaptainKirk”

http://bit.ly.cujv/
http://bit.ly.cujv/

Working with Strings

• When asking input from the user, the input is
always read as a string

• To convert types you can do:
• var number = Number(stringValue);
• var stringValue = String(number);

Interaction
 Input

 var t = prompt("message here", "default");
• When asking input from the user, the input is always read as a string
• To convert types:

• var number = Number(stringValue);
• var stringValue = String(number);

 Output
 document.writeln("message here");
 console.log("message here");
 alert ("message here");

<!doctype html>
<html>

<head>
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8" />

<title>Input/Output</title>
</head>

<body>
<script type="text/javascript">

document.writeln("Bill Calculation System
");

var costPerCredit, numberOfCredits, tuitionCost;

/* Reading values from the user */
costPerCredit = prompt("Enter cost per credit:");
numberOfCredits = prompt("Enter number of credits:");

// Computing cost
tuitionCost = costPerCredit * numberOfCredits;

document.writeln("Tuition Cost:" + tuitionCost);
</script>

</body>
</html>

Basic Control Structures

• Sequential
– Perform instructions one after another

• Conditional
– Perform instructions contingent on something

• Repetition
– Repeat instructions until a condition is met

1: Sequential Control Structure

var a = 2;
var b = 3;
var c = a * b;

Something
Else

Do
Something

Third
Thing

2: Conditional Control Structure

if (gender == "male") {
greeting = "It’s a boy!";

} else {
greeting = "It’s a girl!";

}

true false

Something
Else

Do
Something

Condition

Continue

Note the indentation...

Note, the text in red is part of
the “template” of the
conditional

Nested if-else clauses
if (expression) {
if (expression) {
…

} else {
…

}
} else {

…
}

Note this is where indentation become important…

Multiple if-else clauses

if (expression) {
…

} else if (expression) {
…

} else if (expression) {
…

} else {
…

}

3: Iterative Control Structure (Loop)

var n = 1;
while (n <= 10) {
document.writeln(n);
n++;

}

for (var n = 1; n <= 10; n++) {
document.writeln(n);

}

true

false

Do
Something

Condition Continue

FYI: Computer scientists like to start at zero…

Note, the text in red is part of
the “template” of the loop

Boolean Operators

• x == y true if x and y are equal [use == not =]
• x != y true if x and y are not equal
• x > y true if x is greater than y
• x <= y true if x is smaller than or equal to y
• x && y true if both x and y are true
• x || y true if either x or y is true
• !x true if x is false

Design Tips

• Protect against unexpected values
– Test the value of all user input
– Test the value of critical function parameters

• Verify that every loop will always terminate
– Include a bailout condition, and report it

• Always test for conditions explicitly
– Trap unexpected conditions with the final else

Programming Tips
• Attention to detail!

– Careful where you place that comma, semicolon, etc.

• Don’t get cute with the logic or the layout
– Reflect the structure of your problem clearly
– Use standard “design patterns”

• Write a little bit of code at a time
– Add some functionality, make sure it works, move on

• Debug by viewing the “state” of your program
– Print values of variables using document.writeln();

Programming Tips
 Details are everything!

 Careful where you place that comma, semi-colon, etc.

 Write a little bit of code at a time
 Add a small new functionality, make sure it works, then move on
 Don’t try to write a large program all at once
 If it doesn’t work, revert back to previous version that worked

 Debug by outputting the state of the program
 Simulate what you think the program is doing
 Print out the value of variables using document.writeln or

console.log
 Is the value what you expected?

 Use the Chrome JavaScript console!

Documentation Tips
• Reflect your pseudocode in your code

– Use meaningful variable names
– Use functions for abstractable concepts

• And name those functions well
– Use comments to fill remaining gaps

• Add a comment to identify each revision
– Give author, date, nature of the change

• Waste space effectively
– Use indentation and blank lines to guide the eye

Algorithms

• A finite sequence of well-defined
instructions designed to accomplish a
certain task

• Named for the Persian mathematician
Al-Khwarizmi

Group Exercise
• Calculate the value of a $10,000 investment at the

end of each year each year from a list of annual
percentage gains or losses, and make a note in
each year for which a constant 5% interest rate
would outperform the variable rate investment.

2001 −11.9%
2002 −22.1%
2003 28.7%
2004 10.9%
2005 4.9%
2006 15.8%
2007 5.5%
2008 −37.0%
2009 26.5%
2010 15.1%

Pair Exercises
• Print every even number below 873 in the

Fibonacci series (1, 1, 2, 3, 5 8, … see Wikipedia).

• Print a 9x9 lower triangular matrix of asterisks.

• Prompt the user to enter a date (number of the
month and number of the day), check to see if the
date is valid (assume February has 28 days), and
reprompt until a valid date is entered.

Some Math Functions
• Math.abs() – Absolute value

– Example: Math.abs(-10)

• Math.max() – Maximum of two values
– Example: Math.max(10, 20)

• Math.sqrt() – Square root
– Example: Math.sqrt(4)

• Math.random() – Random value between 0 and less than 1
– Example: Math.random()

• Constants
– Math.PI – Mathematical constant pi

One More Example

• Write a JavaScript program that asks for a
number (n) and writes an HTML table with
two columns:
– Column1: numbers 0 to n
– Column2: square root of
number

For n=4

<!doctype html>
<html>

<head>
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8" />

<title>Square Root Table</title>
</head>
<body>

<script type="text/javascript">
var currValue = 0;
var maximumValue;
maximumValue = Number(prompt("Enter maximum value"));

document.writeln("<table border=\"10\">");
document.writeln("<caption> Table</caption>");
document.writeln("<tr><th>Number</th><th>2*Number</th></tr>");

while (currValue <= maximumValue) {
document.writeln("<tr><td>" + currValue + "</td><td>" + currValue*2 +"</td></tr>");
currValue = currValue + 1;

}

document.writeln("</table>");
</script>

</body>
</html>

A Look Ahead

• Modular programming
– Functions

• Data structures
– Arrays

• Object-oriented programming
– The document object
– Events

Functions
• Reusable code for complex “statements”

– Takes one or more values as “parameters”
– Returns at most one value as the “result”

function convertToCelsius(f) {
var celsius = 5/9 * (f-32);
return celsius;

} c = convertToCelsius(60);

function convertToCelsius(f) {
var celsius = 5/9 * (f-32);
return celsius;

}

var f = 60;
c = convertToCelsius(f);

Scope of a Variable
• In JavaScript, var “declares” a variable

var mystery; create a variable without defining its type
var b = true; create a boolean b and set it to true
var n = 1; create an integer n and set it to 1
var s = “hello”; create a string s and set it to “hello”

• Variables declared in a function are “local”
• Same name outside function refers to different variable

• All other variables are “global”

Writing JavaScript Functions

• Convenient to put in the <head> section
– Use <!-- … //--> to prevent display of code

…
<head>
<script language="JavaScript" type="text/javascript">
<!--
function calculate() {
var num = eval(document.input.number.value);

…
document.output.number.value = total;

}
//-->
</script>
</head>
…

Using JavaScript with Forms

HTML:
<form name="input" action="">

Please enter a number:
<input size="10" value=" " name="number"/>

</form>
<form name="output" action="">

The sum of all numbers up to the number above is
<input size="10" value=" " name="number" readonly="true"/>

</form>

JavaScript:
var num = eval(document.input.number.value);
document.output.number.value = 10;

Reads in a value from the first form
(eval method turns it into a number)

Changes the value in the second form

Arrays

• A set of elements
– For example, the number of days in each month

• Each element is assigned an index
– A number used to refer to that element

• For example, x[4] is the fifth element (count from zero!)
– Arrays and repetitions work naturally together

Some Useful Predefined “Methods”
• document.writeln(“…”);

– String gets rendered as HTML
– Include “
” to force a line break

• window.alert(“…”);
– String is written verbatim as text
– Include “\n” to force a line break

• foo = window.prompt(“…”);
– String is shown verbatim as text
– Result is whatever string the user enters

Handling Events
• Events:

– Actions that users perform while visiting a page

• Use event handlers to response events
– Event handlers triggered by events
– Examples of event handlers in Javascript

• onMouseover: the mouse moved over an object
• onMouseout: the mouse moved off an object
• onClick: the user clicked on an object

Before You Go

On a sheet of paper, answer the following
(ungraded) question (no names, please):

What was the muddiest point in
today’s class?

	Structured Programming
	Muddiest Points
	Programming in Four Parts
	Machine Language
	Slide Number 5
	Assembly Language
	Programming Languages
	Programming Languages
	High level Languages
	Where does the JavaScript go?
	Key Ideas
	Variables
	The Assignment Statement
	Expressions & Statements
	Strings
	Working with Strings
	Interaction
	Slide Number 18
	Basic Control Structures
	1: Sequential Control Structure
	2: Conditional Control Structure
	Nested if-else clauses
	Multiple if-else clauses
	3: Iterative Control Structure (Loop)
	Boolean Operators
	Design Tips
	Programming Tips
	Programming Tips
	Documentation Tips
	Algorithms
	Group Exercise
	Pair Exercises
	Some Math Functions
	One More Example
	Slide Number 35
	A Look Ahead
	Functions
	Scope of a Variable
	Writing JavaScript Functions
	Using JavaScript with Forms
	Arrays
	Some Useful Predefined “Methods”
	Handling Events
	Before You Go

