
Distributed Teams

Week 13
INFM 603

Agenda

• Distributed teams

• Project presentation prep

• Final exam prep

Strategic Choices

• Acquisition
– Proprietary (“COTS”)
– Open source

• Implementation
– Integrate “Best-of-breed” systems
– “One-off” custom solution

Global Software Development

Barriers
• Geographic distance
• Temporal distance
• Linguistic & cultural distance
• Fear and trust
• Organizational structure
• Process
• Infrastructure
• Project Architecture

Solutions
• Cultural ambassadors
• Configuration management
• Face to face kickoffs
• Modularity
• Well defined interfaces
• Effective handoffs
• Win-win strategies

Extreme Programming

• Planning game
• Customer involvement
• Coding standards
• Simplicity of design
• Pair programming
• Continuous integration
• Refactoring
• Small functional releases

• Collective ownership
• Sustainable pacing
• Metaphor

Open Source “Pros”

• More eyes ⇒ fewer bugs
• Iterative releases ⇒ rapid bug fixes
• Rich community ⇒ more ideas

– Coders, testers, debuggers, users
• Distributed by developers ⇒ truth in advertising
• Open data formats ⇒ Easier integration
• Standardized licenses

Open Source “Cons”
• Communities require incentives

– Much open source development is underwritten
• Developers are calling the shots

– Can result in feature explosion
• Proliferation of “orphans”
• Diffused accountability

– Who would you sue?
• Fragmentation

– “Forking” may lead to competing versions
• Little control over schedule

Total Cost of Ownership

• Planning
• Installation

– Facilities, hardware, software, integration, migration,
disruption

• Training
– System staff, operations staff, end users

• Operations
– System staff, support contracts, outages, recovery, …

Total Cost of Ownership

Open Source Business Models
• Support Sellers

• Loss Leader

• Widget Frosting

• Accessorizing

Sell distribution, branding, and after-sale services.

Give away the software to make a market for proprietary software.

If you’re in the hardware business, giving away software doesn’t hurt.

Sell accessories:
books, compatible hardware, complete systems with pre-installed software

Project Presentations

• Maximum of 25 minutes
• Goals (from the user’s perspective)
• Demo
• Task division between partners
• Most interesting implementation details
• Complete list of limitations
• Lessons learned
• Project process improvement (optional)

Final Exam
• 2 hours

– Starts at 6:00 sharp (be early)
– Ends at 8:00 sharp

• Take it anywhere
– Classroom will be available
– Ask me questions by email or phone

• Open everything
– But no communication with any other person

• Available from the Web and by email
• Submitted to me by email

Unified Modeling Language
• Real systems are more complex than

anyone can comprehend

• Key idea: Progressive refinement
– Carve the problem into pieces
– Carve each piece into smaller pieces
– When the pieces are small enough, code them

• UML provides a formalism for doing this
– But it does not provide the process

Unified Modeling Language

Specifying Structure

• Capturing the big picture
– Use case diagram (interactions with the world)
– Narrative
– Scenarios (examples to provoke thinking)

• Designing the object structure
– Class diagram (“entity-relationship” diagram)
– Object diagram (used to show examples)

Specifying Behavior

• Represent a candidate workflow
– Activity diagram (a “flowchart”)

• Represent object interactions for a scenario
– Collaboration diagram (object-based depiction)
– Sequence diagram (time-based depiction)

• Represent event-object interactions
– Statechart diagram (a “finite state machine”)

Use Case Design

• Use Case Diagram
– Input-output behavior

• Use Case Narrative
– Explains each use case

• Use Case Scenario
– Activity diagram shows how the use cases are

used together

Use Case Diagram

Use Case Diagram

• External “actors”
– Roles of people
– Types of systems

• Use cases
– Top-level functions (solid arrows to/from actors)

• Relationships among use cases
– Always-depends-on (dashed <<include>>)
– Sometimes-is-depended-on (dashed <<extend>>)
– Inherits-from (solid triangle-arrow)

Activity Diagram: Modeling Decisions

O p e n
I n c i d e n t

N o t i f y
P o l i c e C h i e f

N o t i f y
F i r e C h i e f

A l l o c a t e
R e s o u r c e

[f i r e & h i g h P r i o r i t y]

[n o t f i r e & h i g h P r i o r i t y]

[l o w P r i o r i t y]

Thanks to Satish Mishra

Sequence Diagram

:User

ECDSH's
main web page

input search criteria

display
pick up a disk

Detailed info
page Database

search songs/disks by criteria

sumbit

verifyreturn

load page
sumbit

returndisplay
verify

Time

see detailed info

Seacrh
engine

search det. info

Activation

Message

Thanks to Satish Mishra

Good Uses for UML

• Focusing your attention
– Design from the outside in

• Representing partial understanding
– Says what you know, silent otherwise

• Validate that understanding
– Structuring communication with stakeholders

Avoiding UML Pitfalls

• Don’t sweat the notation too much
– The key is to be clear about what you mean!

• Don’t try to make massive conceptual leaps
– Leverage encapsulation to support abstraction

• Don’t get to attached to your first design
– Goal is to find weaknesses in your understanding

	Distributed Teams
	Agenda
	Strategic Choices
	Global Software Development
	Extreme Programming
	Open Source “Pros”
	Open Source “Cons”
	Total Cost of Ownership
	Total Cost of Ownership
	Open Source Business Models
	Project Presentations
	Final Exam
	Unified Modeling Language
	Unified Modeling Language
	Specifying Structure
	Specifying Behavior
	Use Case Design
	Use Case Diagram
	Use Case Diagram
	Slide Number 20
	Sequence Diagram�
	Good Uses for UML
	Avoiding UML Pitfalls

