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Agenda

• Distributed teams

• Project presentation prep

• Final exam prep



Strategic Choices

• Acquisition
– Proprietary (“COTS”)
– Open source

• Implementation
– Integrate “Best-of-breed” systems
– “One-off” custom solution



Global Software Development

Barriers
• Geographic distance
• Temporal distance
• Linguistic & cultural distance
• Fear and trust
• Organizational structure
• Process
• Infrastructure
• Project Architecture

Solutions
• Cultural ambassadors
• Configuration management
• Face to face kickoffs
• Modularity
• Well defined interfaces
• Effective handoffs
• Win-win strategies



Extreme Programming

• Planning game
• Customer involvement
• Coding standards
• Simplicity of design
• Pair programming
• Continuous integration
• Refactoring
• Small functional releases

• Collective ownership
• Sustainable pacing
• Metaphor



Open Source “Pros”

• More eyes ⇒ fewer bugs
• Iterative releases ⇒ rapid bug fixes 
• Rich community ⇒ more ideas

– Coders, testers, debuggers, users
• Distributed by developers ⇒ truth in advertising
• Open data formats ⇒ Easier integration
• Standardized licenses



Open Source “Cons”
• Communities require incentives

– Much open source development is underwritten
• Developers are calling the shots

– Can result in feature explosion
• Proliferation of “orphans”
• Diffused accountability

– Who would you sue?
• Fragmentation

– “Forking” may lead to competing versions
• Little control over schedule



Total Cost of Ownership

• Planning
• Installation

– Facilities, hardware, software, integration, migration, 
disruption

• Training
– System staff, operations staff, end users

• Operations
– System staff, support contracts, outages, recovery, …



Total Cost of Ownership



Open Source Business Models
• Support Sellers

• Loss Leader

• Widget Frosting

• Accessorizing 

Sell distribution, branding, and after-sale services. 

Give away the software to make a market for proprietary software.

If you’re in the hardware business, giving away software doesn’t hurt.

Sell accessories: 
books, compatible hardware, complete systems with pre-installed software



Project Presentations

• Maximum of 25 minutes
• Goals (from the user’s perspective)
• Demo
• Task division between partners
• Most interesting implementation details
• Complete list of limitations
• Lessons learned
• Project process improvement (optional)



Final Exam
• 2 hours

– Starts at 6:00 sharp (be early)
– Ends at 8:00 sharp

• Take it anywhere
– Classroom will be available
– Ask me questions by email or phone

• Open everything
– But no communication with any other person

• Available from the Web and by email
• Submitted to me by email



Unified Modeling Language
• Real systems are more complex than 

anyone can comprehend

• Key idea: Progressive refinement
– Carve the problem into pieces
– Carve each piece into smaller pieces
– When the pieces are small enough, code them

• UML provides a formalism for doing this
– But it does not provide the process



Unified Modeling Language



Specifying Structure

• Capturing the big picture
– Use case diagram (interactions with the world)
– Narrative
– Scenarios (examples to provoke thinking)

• Designing the object structure
– Class diagram (“entity-relationship” diagram)
– Object diagram (used to show examples)



Specifying Behavior

• Represent a candidate workflow
– Activity diagram (a “flowchart”)

• Represent object interactions for a scenario
– Collaboration diagram (object-based depiction)
– Sequence diagram (time-based depiction)

• Represent event-object interactions
– Statechart diagram (a “finite state machine”)



Use Case Design

• Use Case Diagram
– Input-output behavior

• Use Case Narrative
– Explains  each use case

• Use Case Scenario
– Activity diagram shows how the use cases are 

used together



Use Case Diagram



Use Case Diagram

• External “actors”
– Roles of people
– Types of systems

• Use cases 
– Top-level functions (solid arrows to/from actors)

• Relationships among use cases
– Always-depends-on (dashed <<include>>)
– Sometimes-is-depended-on (dashed <<extend>>)
– Inherits-from (solid triangle-arrow)



Activity Diagram: Modeling Decisions
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Thanks to Satish Mishra



Sequence Diagram
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Good Uses for UML

• Focusing your attention
– Design from the outside in

• Representing partial understanding
– Says what you know, silent otherwise

• Validate that understanding
– Structuring communication with stakeholders



Avoiding UML Pitfalls

• Don’t sweat the notation too much
– The key is to be clear about what you mean!

• Don’t try to make massive conceptual leaps
– Leverage encapsulation to support abstraction

• Don’t get to attached to your first design
– Goal is to find weaknesses in your understanding
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