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Different Perspectives on Design
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The System Life Cycle

• Systems analysis
– How do we know what kind of system to build?

• User-centered design
– How do we discern and satisfy user needs?

• Implementation
– How do we build it?

• Management
– How do we use it?



Systems Analysis

• Understand the task
– Limitations of existing approaches

• Understand the environment
– Structure of the industry, feasibility study

• Identify the information flows
– e.g., Serials use impacts cancellation policy

• Design a solution
• Test it against the real need



What are Requirements?

• Attributes
– Appearance
– Concepts (represented by data)

• Behavior
– What it does
– How you control it
– How you observe the results
– How the process evolves



Types of Requirements
• User-centered

– Functionality
• System-centered

– Availability
• Mean Time Between Failures (MTBF)
• Mean Time To Repair (MTTR)

– Capacity
• Number of users for each application
• Response time

– Flexibility
• Upgrade path



Who Sets the Requirements?

• People who need the task done (customers)

• People that will operate the system (users)

• People who use the system’s outputs

• People who provide the system’s inputs

• Whoever pays for it (sponsor)



The Waterfall Model

Requirements

Specification

Software

Test Plan



Agile Methods



The Requirements Interview
• Focus the discussion on the task

– Look for objects that are mentioned
• Discuss the system’s most important effects

– Displays, reports, data storage, device control, …
• Learn where the system’s inputs come from

– People, stored data, devices, …  
• Note any data that is mentioned

– Try to understand the structure of the data
• Shoot for the big picture, not every detail



Analyze the Information Flows
• Where does information originate?

– Might come from multiple sources
– Feedback loops may have no identifiable source

• Which parts should be automated?
– Some things are easier to do in other ways

• Which automated parts should be integrated?
• What existing systems are involved?

– What information do they contain?
– Which systems should be retained?
– What data will require “retrospective conversion”?



Interaction Modality Choices

• Interactive
– Do it while the user is present

• Batch processing
– Save it up and do it all at once



Unified Modeling Language
• Real systems are more complex than 

anyone can comprehend

• Key idea: Progressive refinement
– Carve the problem into pieces
– Carve each piece into smaller pieces
– When the pieces are small enough, code them

• UML provides a formalism for doing this
– But it does not provide the process



Unified Modeling Language



Specifying Structure

• Capturing the big picture
– Use case diagram (interactions with the world)
– Narrative
– Scenarios (examples to provoke thinking)

• Designing the object structure
– Class diagram (“entity-relationship” diagram)
– Object diagram (used to show examples)



Specifying Behavior

• Represent a candidate workflow
– Activity diagram (a “flowchart”)

• Represent object interactions for a scenario
– Collaboration diagram (object-based depiction)
– Sequence diagram (time-based depiction)

• Represent event-object interactions
– Statechart diagram (a “finite state machine”)



Use Case Design

• Use Case Diagram
– Input-output behavior

• Use Case Narrative
– Explains  each use case

• Use Case Scenario
– Activity diagram shows how the use cases are 

used together



Use Case Diagram



Use Case Diagram

• External “actors”
– Roles of people
– Types of systems

• Use cases 
– Top-level functions (solid arrows to/from actors)

• Relationships among use cases
– Always-depends-on (dashed <<include>>)
– Sometimes-is-depended-on (dashed <<extend>>)
– Inherits-from (solid triangle-arrow)



Activity Diagram: Modeling Decisions
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Sequence Diagram
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Good Uses for UML

• Focusing your attention
– Design from the outside in

• Representing partial understanding
– Says what you know, silent otherwise

• Validate that understanding
– Structuring communication with stakeholders



Avoiding UML Pitfalls

• Don’t sweat the notation too much
– The key is to be clear about what you mean!

• Don’t try to make massive conceptual leaps
– Leverage encapsulation to support abstraction

• Don’t get to attached to your first design
– Goal is to find weaknesses in your understanding



Total Cost of Ownership

• Planning
• Installation

– Facilities, hardware, software, integration, migration, 
disruption

• Training
– System staff, operations staff, end users

• Operations
– System staff, support contracts, outages, recovery, …



Management Issues
• Policy

– Privacy, access control, appropriate use, …
• Training

– System staff, organization staff, “end users”
• Operations

– Fault detection and response
– Backup and disaster recovery
– Audit
– Cost control (system staff, periodic upgrades, …)

• Planning
– Capacity assessment, predictive reliability, …



Strategic Choices

• Acquisition
– Proprietary (“COTS”)
– Open source

• Implementation
– Integrate “Best-of-breed” systems
– “One-off” custom solution



Open Source “Pros”

• More eyes ⇒ fewer bugs
• Iterative releases ⇒ rapid bug fixes 
• Rich community ⇒ more ideas

– Coders, testers, debuggers, users
• Distributed by developers ⇒ truth in advertising
• Open data formats ⇒ Easier integration
• Standardized licenses



Open Source “Cons”
• Communities require incentives

– Much open source development is underwritten
• Developers are calling the shots

– Can result in feature explosion
• Proliferation of “orphans”
• Diffused accountability

– Who would you sue?
• Fragmentation

– “Forking” may lead to competing versions
• Little control over schedule



Open Source Business Models
• Support Sellers

• Loss Leader

• Widget Frosting

• Accessorizing 

Sell distribution, branding, and after-sale services. 

Give away the software to make a market for proprietary software.

If you’re in the hardware business, giving away software doesn’t hurt.

Sell accessories: 
books, compatible hardware, complete systems with pre-installed software



Total Cost of Ownership



Summary

• Systems analysis
– Required for complex multi-person tasks

• User-centered design
– Multiple stakeholders complicate the process

• Implementation
– Architecture, open standards, …

• Management
– Typically the biggest cost driver
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