
Requirements Analysis

Week 11
INFM 603

Different Perspectives on Design

Thanks to Satish Mishra

The System Life Cycle

• Systems analysis
– How do we know what kind of system to build?

• User-centered design
– How do we discern and satisfy user needs?

• Implementation
– How do we build it?

• Management
– How do we use it?

Systems Analysis

• Understand the task
– Limitations of existing approaches

• Understand the environment
– Structure of the industry, feasibility study

• Identify the information flows
– e.g., Serials use impacts cancellation policy

• Design a solution
• Test it against the real need

What are Requirements?

• Attributes
– Appearance
– Concepts (represented by data)

• Behavior
– What it does
– How you control it
– How you observe the results
– How the process evolves

Types of Requirements
• User-centered

– Functionality
• System-centered

– Availability
• Mean Time Between Failures (MTBF)
• Mean Time To Repair (MTTR)

– Capacity
• Number of users for each application
• Response time

– Flexibility
• Upgrade path

Who Sets the Requirements?

• People who need the task done (customers)

• People that will operate the system (users)

• People who use the system’s outputs

• People who provide the system’s inputs

• Whoever pays for it (sponsor)

The Waterfall Model

Requirements

Specification

Software

Test Plan

Agile Methods

The Requirements Interview
• Focus the discussion on the task

– Look for objects that are mentioned
• Discuss the system’s most important effects

– Displays, reports, data storage, device control, …
• Learn where the system’s inputs come from

– People, stored data, devices, …
• Note any data that is mentioned

– Try to understand the structure of the data
• Shoot for the big picture, not every detail

Analyze the Information Flows
• Where does information originate?

– Might come from multiple sources
– Feedback loops may have no identifiable source

• Which parts should be automated?
– Some things are easier to do in other ways

• Which automated parts should be integrated?
• What existing systems are involved?

– What information do they contain?
– Which systems should be retained?
– What data will require “retrospective conversion”?

Interaction Modality Choices

• Interactive
– Do it while the user is present

• Batch processing
– Save it up and do it all at once

Unified Modeling Language
• Real systems are more complex than

anyone can comprehend

• Key idea: Progressive refinement
– Carve the problem into pieces
– Carve each piece into smaller pieces
– When the pieces are small enough, code them

• UML provides a formalism for doing this
– But it does not provide the process

Unified Modeling Language

Specifying Structure

• Capturing the big picture
– Use case diagram (interactions with the world)
– Narrative
– Scenarios (examples to provoke thinking)

• Designing the object structure
– Class diagram (“entity-relationship” diagram)
– Object diagram (used to show examples)

Specifying Behavior

• Represent a candidate workflow
– Activity diagram (a “flowchart”)

• Represent object interactions for a scenario
– Collaboration diagram (object-based depiction)
– Sequence diagram (time-based depiction)

• Represent event-object interactions
– Statechart diagram (a “finite state machine”)

Use Case Design

• Use Case Diagram
– Input-output behavior

• Use Case Narrative
– Explains each use case

• Use Case Scenario
– Activity diagram shows how the use cases are

used together

Use Case Diagram

Use Case Diagram

• External “actors”
– Roles of people
– Types of systems

• Use cases
– Top-level functions (solid arrows to/from actors)

• Relationships among use cases
– Always-depends-on (dashed <<include>>)
– Sometimes-is-depended-on (dashed <<extend>>)
– Inherits-from (solid triangle-arrow)

Activity Diagram: Modeling Decisions

O p e n
I n c i d e n t

N o t i f y
P o l i c e C h i e f

N o t i f y
F i r e C h i e f

A l l o c a t e
R e s o u r c e

[f i r e & h i g h P r i o r i t y]

[n o t f i r e & h i g h P r i o r i t y]

[l o w P r i o r i t y]

Thanks to Satish Mishra

Sequence Diagram

:User

ECDSH's
main web page

input search criteria

display
pick up a disk

Detailed info
page Database

search songs/disks by criteria

sumbit

verifyreturn

load page
sumbit

returndisplay
verify

Time

see detailed info

Seacrh
engine

search det. info

Activation

Message

Thanks to Satish Mishra

Good Uses for UML

• Focusing your attention
– Design from the outside in

• Representing partial understanding
– Says what you know, silent otherwise

• Validate that understanding
– Structuring communication with stakeholders

Avoiding UML Pitfalls

• Don’t sweat the notation too much
– The key is to be clear about what you mean!

• Don’t try to make massive conceptual leaps
– Leverage encapsulation to support abstraction

• Don’t get to attached to your first design
– Goal is to find weaknesses in your understanding

Total Cost of Ownership

• Planning
• Installation

– Facilities, hardware, software, integration, migration,
disruption

• Training
– System staff, operations staff, end users

• Operations
– System staff, support contracts, outages, recovery, …

Management Issues
• Policy

– Privacy, access control, appropriate use, …
• Training

– System staff, organization staff, “end users”
• Operations

– Fault detection and response
– Backup and disaster recovery
– Audit
– Cost control (system staff, periodic upgrades, …)

• Planning
– Capacity assessment, predictive reliability, …

Strategic Choices

• Acquisition
– Proprietary (“COTS”)
– Open source

• Implementation
– Integrate “Best-of-breed” systems
– “One-off” custom solution

Open Source “Pros”

• More eyes ⇒ fewer bugs
• Iterative releases ⇒ rapid bug fixes
• Rich community ⇒ more ideas

– Coders, testers, debuggers, users
• Distributed by developers ⇒ truth in advertising
• Open data formats ⇒ Easier integration
• Standardized licenses

Open Source “Cons”
• Communities require incentives

– Much open source development is underwritten
• Developers are calling the shots

– Can result in feature explosion
• Proliferation of “orphans”
• Diffused accountability

– Who would you sue?
• Fragmentation

– “Forking” may lead to competing versions
• Little control over schedule

Open Source Business Models
• Support Sellers

• Loss Leader

• Widget Frosting

• Accessorizing

Sell distribution, branding, and after-sale services.

Give away the software to make a market for proprietary software.

If you’re in the hardware business, giving away software doesn’t hurt.

Sell accessories:
books, compatible hardware, complete systems with pre-installed software

Total Cost of Ownership

Summary

• Systems analysis
– Required for complex multi-person tasks

• User-centered design
– Multiple stakeholders complicate the process

• Implementation
– Architecture, open standards, …

• Management
– Typically the biggest cost driver

	Requirements Analysis
	Different Perspectives on Design
	The System Life Cycle
	Systems Analysis
	What are Requirements?
	Types of Requirements
	Who Sets the Requirements?
	The Waterfall Model
	Agile Methods
	The Requirements Interview
	Analyze the Information Flows
	Interaction Modality Choices
	Unified Modeling Language
	Unified Modeling Language
	Specifying Structure
	Specifying Behavior
	Use Case Design
	Use Case Diagram
	Use Case Diagram
	Slide Number 20
	Sequence Diagram�
	Good Uses for UML
	Avoiding UML Pitfalls
	Total Cost of Ownership
	Management Issues
	Strategic Choices
	Open Source “Pros”
	Open Source “Cons”
	Open Source Business Models
	Total Cost of Ownership
	Summary

