
Data Structures

Week 7

INFM 603

Muddiest Points

• Nested loops (4)

• Reading code (2)

• Getting started on a program (1)

• Syllabus (1)

The Key Ideas

• Structured Programming

Modular Programming

Data Structures

• Object-Oriented Programming

Arrays

• A set of elements

– For example, the number of days in each month

• Each element is assigned an index

– A number used to refer to that element

• For example, x[4] is the fifth element (count from zero!)

– Arrays and iteration work naturally together

• “Constructor” allocates space

– var myArray = new Array(5); // all unitialized

– var myArray = [42, 17, , 22, 1]; // partially initialized

Array Example

// allocate five-element Array (indexed 0..4)

var n = new Array(5);

// assign values to each element of Array n1

for (var i=0; i<n.length; i++) {

 n[i] = i;

}

// output index and value of each element

for (var i=0; i<n.length; i++) {

 document.writeln(i + “: “ + n[i]);

}

Data Structures

• Constant

– Names given to unchanging values (for readability)

• Scalar

– Single-valued item (int, float, boolean)

• Object

– Multi-valued item, mixed data types [+methods]

• Array

– Integer-indexed set of objects (usually of one type)

• Associative array (“hash table”)

– Object-index set of objects (usually of one type)

Associative Arrays in JavaScript

var myArray = new Array();

myArray['one'] = 1;

myArray['two'] = 2;

myArray['three'] = 3;

// show the values stored

for (var i in myArray) { // skips unitialized

 alert('key is: ' + i +

 ', value is: ' + myArray[i]);

}

Common Uses of Arrays

• Iterative computation

• Queue (FIFO)

• Stack (LIFO)

Functions

• Reusable code for complex “statements”

– Takes zero or more values as “parameters”

– Returns at most one value as the “result”

 function convertToCelsius(f) {

 var celsius = 5/9 * (f-32);

 return celsius;

}
c = convertToCelsius(60);

function convertToCelsius(f) {

 var celsius = 5/9 * (f-32);

 return celsius;

}

var f = 60;

c = convertToCelsius(f);

Uses of Functions

• Compactness

– Minimizing duplicative code

• Modular programming

– Abstraction

– Reusability

• Avoid “side effects” for modular programming

Scope of a Variable

• In JavaScript, var “declares” a variable

var mystery; create a variable without defining its type

var b = true; create a boolean b and set it to true

var n = 1; create an integer n and set it to 1

var s = “hello”; create a string s and set it to “hello”

• Variables declared in a function are “local”

• Function parameters are implicitly declared (local)

• Same name outside function refers to different variable

• All other variables are “global”

Parameter Passing
• Scalars are copied

– “Pass by value”

• Arrays (and all objects) pass “by reference”

– The values in the array are not copied

• Be careful to make “side effects” explicit

– No need to return the same reference

• Functions can also be passed as parameters

– Unchangable, so “by reference” = “by value”

• Returned values work the same way

Recursion

• A function can call itself

– Local variables are different each time

• Every invocation of the function must end

– There must be a path that ends the recursion

– That path must eventually be taken

– The usual way to do this is an initial if statement

• Never essential

– But sometimes more elegant than iteration

Binary Search with Recursion

function binarySearch(theArray, key, low, high) {

 var middle;

 if (low>=high) { // Safety check!

 if (key==theArray[low]) {

 return low;

 } else {

 return -1;

 }

 } else {

 middle = Math.floor((low+high)/2); // Explicit!

 buildOutput(theArray, low, middle, high);

 if (key<=theArray[middle]) { // Equality!

 return binarySearch(theArray, key, low, middle);

 } else {

 return binarySearch(theArray, key, middle+1, high);

 }

 }

}

Using JavaScript with Forms

HTML:

<form name="input" action=" ">

 Please enter a number:

 <input size="10" value=" " name="number"/>

</form>

<form name="output" action=" ">

 The sum of all numbers up to the number above is

 <input size="10" value=" " name="number" readonly="true"/>

</form>

JavaScript:

var num = eval(document.input.number.value);

document.output.number.value = 10;

Reads in a value from the first form

(eval method turns it into a number)

Changes the value in the second form

HTML Form Element Types

• Textarea (multiple lines)

• Input

– Text (single line)

– Password (like text, but masked)

– Hidden (like text, but not displayed at all)

– Button

– Checkbox (multiple selection)

– Radio (single selection)

• Select (dropdown list)

see http://www.w3schools.com/html/html_forms.asp for examples

Linking Forms to Functions

• Events:

– Actions that users perform

• An “event handler” is triggered by an event

– onClick: the user clicked on the item

– onMouseover: the mouse moved onto the item

– onMouseout: the mouse moved off of the item

Referring to Form Content

<form action = " ">

 <p>Enter integer search key

 <input id = "inputVal" type = "text" />

</form>

…

var inputVal = document.getElementById("inputVal");

var searchKey = inputVal.value;

<form name=years>

 Please enter your age

 <input type=text name=box />

</form>

…

var age = document.years.box.value;

Design Tips

• Protect against unexpected values

– Test the value of all user input

– Test the value of critical function parameters

• Verify that every loop will always terminate

– Include a bailout condition, and report it

• Always test for conditions explicitly

– Trap unexpected conditions with the final else

Programming Tips

• Attention to detail!

– Careful where you place that comma, semicolon, etc.

• Don’t get cute with the logic or the layout

– Reflect the structure of your problem clearly

– Use standard “design patterns”

• Write a little bit of code at a time

– Add some functionality, make sure it works, move on

• Debug by viewing the “state” of your program

– Print values of variables using document.writeln();

Documentation Tips

• Reflect your pseudocode in your code

– Use meaningful variable names

– Use functions for abstractable concepts

• And name those functions well

– Use comments to fill remaining gaps

• Add a comment to identify each revision

– Give author, date, nature of the change

• Waste space effectively

– Use indentation and blank lines to guide the eye

Why Program?

• Data manipulation

• Simulation

• Control

– Interaction

– Embedded

Before You Go

 On a sheet of paper, answer the following

(ungraded) question (no names, please):

 What was the muddiest point in

today’s class?

