
Web Infrastructure

Week 2

INFM 603

Agenda

• Questions

• XHTML

• CSS

• JavaScript

HTML
(data/display)

Internet

communication

protocols

RTSPFTPEmail

Web

Server

HTTP
(transfer)

File System

URL
(e.g.,http://www.foo.org/snarf.html)

HTML
HTTP
URL

“The Web”

Hypertext “Anchors”

• Internal anchors: somewhere on the same page

– Students

• Links to: Student Information

• External anchors: to another page

– iSchool

– iSchool students

• URL may be complete, or relative to current page

– 2

• File name part of URL is case sensitive (on Unix servers)

– Protocol and domain name are not case sensitive

Link Structure of the Web

What’s a Document?

• Content

• Structure

• Appearance

• Behavior

“Hello World” HTML

<html>

<head>

<title>Hello World!</title>

</head>

<body>

<p>Hello world! This is my first webpage!</p>

</body>

</html>

This is the header

This is the actual content of the HTML document

Rendering

• Different devices have different capabilities

– Desktop or laptop computer

– Handheld device

• Rendering maps logical tags to physical layout

– Controls line wrap, size, font…

• Place the title in the page border

• Render <h1> as 24pt Times

• Render as bold

Logical Structure Tags

• Head

– Title

• Body

– Headers: <h1> <h2> <h3> <h4> <h5>

– Lists: , (can be nested)

– Paragraphs:<p>

– Definitions: <dt><dd>

– Tables: <table> <tr> <td> </td> </tr> </table>

– Role: <cite>, <address>, , …

Physical Structure Tags

• Font

– Typeface:

– Size:

– Color:

• http://webmonkey.wired.com/webmonkey/reference

/color_codes/Emphasis

– Bold:

– Italics: <i></i>

What’s Wrong with the Web?

• HTML

– Confounds structure and appearance (XML)

• HTTP

– Can’t recognize related transactions (Cookies)

• URL

– Links breaks when you move a file (PURL)

History of Structured Documents

• Early standards were “typesetting languages”

– NROFF, TeX, LaTeX, SGML

• HTML was developed for the Web

• Specialized standards met other needs

– Change tracking in Word, annotating manuscripts, …

• XML seeks to unify these threads

– One standard format for printing, viewing, processing

The XML Family Tree

SGML

XML

HTML TEI

. . .

. . .

XHTML

SMIL

MathML

SpeechML

RDF

XUL

Some Basic Rules for All XML

• XML is case sensitive

• XML declaration is the first statement

– <?xml version="1.0"?>

• An XML document is a “tree”

– Must contain one root element

– Other elements must be properly nested

• All start tags must have end tags

• Attribute values must have quotation marks

– <item id=“33905”>

• Certain characters are “reserved”

– For example: < is used to represent <

XHTML: Cleaning up HTML

<?xml version="1.0" encoding="iso-8859-1"?>

<html xmlns="http://www.w3.org/TR/xhtml1" >

<head>

<title> Title of text XHTML Document </title>

</head>

<body>

<div class="myDiv">

<h1> Heading of Page </h1>

<p> here is a paragraph of text. I will include inside this paragraph

a bunch of wonky text so that it looks fancy. </p>

<p>Here is another paragraph with inline emphasized

text, and absolutely no sense of humor. </p>

<p>And another paragraph, this one with an <img src="image.gif"

alt="waste of time" /> image, and a
 line break. </p>

</div>

</body></html>

Defining Blocks of Text

• <div> … </div>

– Named region

– Implies a paragraph break,

– Can include multiple paragraphs

• <p> … </p>

– Individual paragraph

• …

– Any region

– Does not create a paragraph break

CSS

• Separating content and structure from

appearance

• Rules for defining styles “cascade” from

broad to narrow:

– Browser default

– External style sheet

– Internal style sheet

– Inline style

Basics of CSS

• Basic syntax:

• Example:

Causes
– Font to be center-aligned

– Font to be Arial and black

selector {property: value}

HTML tag you want to modify…

The property you want to change…

The value you want the property to take

p { text-align: center;

color: black;

font-family: arial }

Different Ways of Using CSS

• Inline style:

– Causes only this tag to have the desired

properties

• Internal stylesheet:

– Causes all tags to have the desired properties

<p style="font-family:arial; color:blue“>…</p>

…

<head>…

<style type="text/css" >

p { font-family:arial; color:blue}

</style>

</head>

<body>

<p>…</p>

…

Customizing Classes

• Ability to define customized styles for

standard HTML tags:

…

<head>…

<style type="text/css">

p.style1 { font-family:arial; color:blue}

p.style2 { font-family:serif; color:red}

</style>

</head>

<body>

<p class=“style1“>…</p>

<p class=“style2“>…</p>

…

External Style Sheets

• Store formatting metadata in a separate file

…

<head>…

<link rel="stylesheet" href="mystyle.css" type="text/css" />

</head>

<body>

<p class=“style1">…</p>

<p class=“style2">…</p>

…

p.style1 { font-family:arial; color:blue}

p.style2 { font-family:serif; color:red}

mystyle.css

HTML Editors

• Several are available

– Macromedia Dreamweaver available commercially

– Microsoft Word (Page->”Edit with Word” in IE)

• You may still need to edit the HTML file

– Some editors use browser-specific features

– Some HTML features may be unavailable

– File names may be butchered when you upload

• Detailed patterns can make hand-editing difficult

Some Style Guidelines

• Provide appropriate “access points”

– Users’ navigation strategies differ

• Design useful navigational aids

– Search may lead users to the middle of a site

• Include some indication of recency

– Date of last update, “new” icons, etc.

• Indicate who is responsible for the content

– Helps readers assess authority

Some Accessibility Guidelines

• Design for device independence

• Maintain compatibility with earlier browsers

– Provide alternative pages if necessary

• Provide alternatives to aural and visual content

– Alt tags for images, transcripts for audio

• Make is easy for assistive devices to work

– Give a title to each frame

– Use tables only for data, not to control layout

Section 508 (Federal Web pages)
• A text equivalent for every non-text element shall be provided.

• Equivalent alternatives for any multimedia presentation shall be synchronized with the presentation.

• Web pages shall be designed so that all information conveyed with color is also available without color.

• Documents shall be organized so they are readable without requiring an associated style sheet.

• Redundant text links shall be provided for each active region of a server-side image map.

• Client-side image maps shall be provided instead of server-side image maps except where the regions

cannot be defined with an available geometric shape.

• Row and column headers shall be identified for data tables.

• Markup shall be used to associate data cells and header cells for data tables that have two or more

logical levels of row or column headers.

• Frames shall be titled with text that facilitates frame identification and navigation.

• Pages shall be designed to avoid causing the screen to flicker with a frequency >2 Hz and <55 Hz.

• A text-only page, with equivalent information or functionality, shall be provided when compliance

cannot be accomplished in any other way. The content shall be updated when the primary page changes

• When pages use scripting languages to display content or to create interface elements, the information

provided by the script shall be identified with functional text that can be read by assistive technology.

• When a web page requires that an applet, plug-in or other application be present on the client system to

interpret page content, the page must provide a link to a plug-in or applet that complies with the above.

• When electronic forms are designed to be completed on-line, the form shall allow people using assistive

technology to access the information, field elements, and functionality required.

• A method shall be provided that permits users to skip repetitive navigation links.

• When a timed response is required, the user shall be alerted and given sufficient time to indicate more

time is required.

Validation Services

• HTML cross-browser compatibility

– http://validator.w3.org

• CSS cross-browser compatibility

– http://jigsaw.w3.org/css-validator/

• Section 508 compliance

– http://www.cynthiasays.com/

• Try them on http://www.umd.edu 

Programming for the Web

• JavaScript [Client-side]

– Server embeds a program in HTML

– Browser runs the program when it gets to it

• PHP “Common Gateway Interface” [Server-side]

– HTML form sends field values to the server

– Server passes field values to a program

– Program generates a Web page as a response

• Ruby on Rails [Ajax]

– Server sends browser a generic program to run

– Browser and server programs exchange XML-encoded data

Software

• Software models some aspects of reality

– Input and output represent the state of the world

– Software describes how the two are related

• Examples

– Ballistic computations

– Google

– Microsoft Word

Programming Languages

• Used to specify every detail of the model

• Special purpose

– Able to specify an entire class of models

• Spreadsheets (Excel, ...)

• Databases (Access, Oracle, ...)

• General purpose

– Able to specify any possible model

• JavaScript, Java, Ruby, Perl, C, C++, ...

History of Programming

• Machine language

– Language that machine can understand

• Assembly language

– Assembler translates “symbolic” references to machine
instructions and memory locations into machine code

• High-level languages

– Compiler rewrites everything in machine code OR

– Interpreter performs the specified actions at “run time”

Programming Languages

Hardware

Machine Language

Assembly Language

Ruby PHP Java C++ JavaScript

Machine Language

• Everything is a binary number

– Operations

– Data

00001000 ADD

00010101 number to be added (21)

01010110 memory location to add it to (86)

00001000 00010101 01010110

Assembly Language

• Symbolic instructions and addresses

– Symbolic instruction “ADD”

– Symbolic address “SUM1”

• For instance

ADD 21, SUM1

High level Languages

• Procedural (modular) Programming

– Group instructions into meaningful abstractions

– C, Pascal, Perl

• Object oriented programming

– Group “data” and “methods” into “objects”

– Naturally represents the world around us

– C++, Java, JavaScript, PHP, Ruby

JavaScript

<HTML>

<HEAD>

<TITLE>My first script</TITLE>

</HEAD>

<BODY BGCOLOR=WHITE>

<H1>

<SCRIPT LANGUAGE=JAVASCRIPT TYPE="TEXT/JAVASCRIPT">

document.write("Hello, world!")

</SCRIPT>

</H1>

</BODY></HTML>

Variables

• Data types:

– Boolean: true, false

– Number: 5 9 3.1415926

– String: “Hello World”

• A “variable” holds a value (of some data type)

– Represented as “variable names”: x celsiusTemp

– Variables are “dynamically typed” at run time

• If you use it as a string, it’s a string …

– Variable names are case sensitive in JavaScript

Operators

-x reverse the sign of x (negation)

6+5 Addition (numeric)

“Hello” + “ World” Concatenation (strings) [note the space]

2.1 * 3 Multiply (treats the int as a float)

4 + “ Horsemen” Concatenation (treats 4 as a string)

Assignment Statements

• Assignment sets the value of a variable
x = 5 set the value of x to be 5

[a command, not an assertion!!]

x = 5*x Multiply x by 5 and save the result in x

x = 5+8/4*2 Set x to 5+((8/4)*2) [precedence rules!]

x += y x = x + y

x++ x = x + 1

• JavaScript statements end with a semicolon

• Optional at the end of a line

Some Useful Predefined “Methods”

• document.writeln(“…”);

– String gets rendered as (X)HTML

– Include “
” to force a line break

• window.alert(“…”);

– String is written verbatim as text

– Include “\n” to force a line break

• foo = window.prompt(“…”);

– String is shown verbatim as text

– Result is whatever string the user enters

Functions (non-object “Methods”)
• Reusable code for complex “statements”

– Takes one or more values as “parameters”

– Returns at most one value as the “result”

function convertToCelsius(f) {

var celsius = 5/9 * (f-32);

return celsius;

}
c = convertToCelsius(60);

function convertToCelsius(f) {

var celsius = 5/9 * (f-32);

return celsius;

}

var f = 60;

c = convertToCelsius(f);

Writing JavaScript Functions

• Convenient to put it in the <head> section

– Use <!-- … //--> to prevent display of code

…

<head>

<script language="JavaScript" type="text/javascript">

<!--

function calculate() {

var num = eval(document.input.number.value);

…

document.output.number.value = total;

}

//-->

</script>

</head>

…

Scope of a Variable

• In JavaScript, var “declares” a variable

var mystery; create a variable without defining its type

var b = true; create a boolean b and set it to true

var n = 1; create an integer n and set it to 1

var s = “hello”; create a string s and set it to “hello”

• Variables declared in a function are “local”

• Same name outside function refers to different variable

• All other variables are “global”

More JavaScript Statements

• Invocation of a function

Temperature.toCelsius(104);

• Return a value from a function

return celsius;

Basic Control Structures

• Sequential

– Perform instructions one after another

• Conditional

– Perform instructions contingent on something

• Repetition

– Repeat instructions until a condition is met

Not much different from cooking recipes!

Sequential Control Structure

a = 2;

b = 3;

c = a * b;

Conditional Selection Control

Structure

if (gender == “male”) {

greeting = “Hello, Sir”;

}

else {

greeting = “Hello, Madam”;

}

Boolean Operators

• x == y true if x and y are equal [use == not =]

• x != y true if x and y are not equal

• x > y true if x is greater than y

• x <= y true if x is smaller than or equal to y

• x && y true if both x and y are true

• x || y true if either x or y is true

• !x true if x is false

Repetition Control Structure

Program Example 1:

n = 1

while (n <= 10) {

document.writeln(n);

n++

}

Program 2:

For (n = 1; n <= 10; n++) {

document.writeln(n);

}

Arrays

• A set of elements

– For example, the number of days in each month

• Each element is assigned an index

– A number used to refer to that element

• For example, x[4] is the fifth element (count from zero!)

– Arrays and repetitions work naturally together

Handling Events

• Events:

– Actions that users perform while visiting a page

• Use event handlers to response events

– Event handlers triggered by events

– Examples of event handlers in Javascript

• onMouseover: the mouse moved over an object

• onMouseout: the mouse moved off an object

• onClick: the user clicked on an object

Using JavaScript with Forms

HTML:

<form name="input" action="">

Please enter a number:

<input size="10" value=" " name="number"/>

</form>

<form name="output" action="">

The sum of all numbers up to the number above is

<input size="10" value=" " name="number" readonly="true"/>

</form>

JavaScript:

var num = eval(document.input.number.value);

document.output.number.value = 10;

Reads in a value from the first form

(eval method turns it into a number)

Changes the value in the second form

Hands On:

Adopt a JavaScript Program

• Launch a Web browser
– http://www.umiacs.umd.edu/~oard/teaching/603/fall11/slides/2/selector.htm

• See how it behaves if you are 13 (or 65)

• View source and read the program

• Save a local copy

• Make some changes and see how it works

Programming Tips

• Attention to detail!

– Careful where you place that comma, semicolon, etc.

• Write a little bit of code at a time

– Add some functionality, make sure it works, move on

– Don’t try to write a large program all at once

• Debug by viewing the “state” of your program

– Print values of variables using document.write

– Is the value what you expected?

Before You Go

On a sheet of paper, answer the following

(ungraded) question (no names, please):

What was the muddiest point in

today’s class?

