
Requirements Analysis

Session 12

INFM 603

Different Perspectives on Design

Thanks to Satish Mishra

The System Life Cycle

• Systems analysis

– How do we know what kind of system to build?

• User-centered design

– How do we discern and satisfy user needs?

• Implementation

– How do we build it?

• Management

– How do we use it?

Systems Analysis

• First steps:

– Understand the task

• Limitations of existing approaches

– Understand the environment

• Structure of the industry, feasibility study

• Then identify the information flows

– e.g., Serials use impacts cancellation policy

• Then design a solution

– And test it against the real need

What are Requirements?

• Attributes

– Appearance

– Concepts (represented by data)

• Behavior

– What it does

– How you control it

– How you observe the results

Types of Requirements

• User-centered

– Functionality

• System-centered

– Availability

• Mean Time Between Failures (MTBF)

• Mean Time To Repair (MTTR)

– Capacity

• Number of users for each application

• Response time

– Flexibility

• Upgrade path

Who Sets the Requirements?

• People who need the task done (customers)

• People that will operate the system (users)

• People who use the system’s outputs

• People who provide the system’s inputs

• Whoever pays for it (sponsor)

The Waterfall Model

Requirements

Specification

Software

Test Plan

Agile Methods

The Requirements Interview

• Focus the discussion on the task

– Look for objects that are mentioned

• Discuss the system’s most important effects

– Displays, reports, data storage, device control, …

• Learn where the system’s inputs come from

– People, stored data, devices, …

• Note any data that is mentioned

– Try to understand the structure of the data

• Shoot for the big picture, not every detail

Analyze the Information Flows

• Where does information originate?

– Might come from multiple sources

– Feedback loops may have no identifiable source

• Which parts should be automated?

– Some things are easier to do without computers

• Which automated parts should be integrated?

• What existing systems are involved?

– What information do they contain?

– Which systems should be retained?

– What data will require “retrospective conversion”?

Interaction Modality Choices

• Interactive

– Do it while the user is present

• Batch processing

– Save it up and do it all at once

Unified Modeling Language

• Real systems are more complex than

anyone can comprehend

• Key idea: Progressive refinement

– Carve the problem into pieces

– Carve each piece into smaller pieces

– When the pieces are small enough, code them

• UML provides a formalism for doing this

– But it does not provide the process

Unified Modeling Language

//upload.wikimedia.org/wikipedia/commons/e/ed/UML_diagrams_overview.svg

Specifying Structure

• Capturing the big picture

– Use case diagram (interactions with the world)

– Narrative

– Scenarios (examples to provoke thinking)

• Designing the object structure

– Class diagram (“entity-relationship” diagram)

– Object diagram (used to show examples)

Specifying Behavior

• Represent a candidate workflow

– Activity diagram (a “flowchart”)

• Represent object interactions for a scenario

– Collaboration diagram (object-based depiction)

– Sequence diagram (time-based depiction)

• Represent event-object interactions

– Statechart diagram (a “finite state machine”)

Use Case Design

• Use Case Diagram

– Input-output behavior

• Use Case Narrative

– Explains each use case

• Use Case Scenario

– Activity diagram shows how the use cases are

used together

Use Case Diagram

//upload.wikimedia.org/wikipedia/commons/7/71/UML_Use_Case_diagram.svg

Use Case Diagram

• External “actors”

– Roles of people

– Types of systems

• Use cases

– Top-level functions (solid arrows to/from actors)

• Relationships among use cases

– Always-depends-on (dashed <<include>>)

– Sometimes-is-depended-on (dashed <<extend>>)

– Inherits-from (solid triangle-arrow)

Thanks to Satish Mishra

Activity Diagram: Modeling Decisions

Open
Incident

Notify
Police Chief

Notify
Fire Chief

Allocate
Resources

[fire & highPriority]

[not fire & highPriority]

[lowPriority]

Sequence Diagram

:User

ECDSH's

main web page

input search criteria

display
pick up a disk

Detailed info

page
Database

search songs/disks by criteria

sumbit

verifyreturn

load page
sumbit

returndisplay
verify

Time

see detailed info

Seacrh

engine

search det. info

Activation

Message

Thanks to Satish Mishra

Good Uses for UML

• Focusing your attention

– Design from the outside in

• Representing partial understanding

– Says what you know, silent otherwise

• Validate that understanding

– Structuring communication with stakeholders

Avoiding UML Pitfalls

• Don’t sweat the notation too much

– The key is to be clear about what you mean!

• Don’t try to make massive conceptual leaps

– Leverage abstraction encapsulation

• Don’t get to attached to your first design

– Goal is to find weaknesses in your understanding

Total Cost of Ownership

• Planning

• Installation

– Facilities, hardware, software, integration, migration,

disruption

• Training

– System staff, operations staff, end users

• Operations

– System staff, support contracts, outages, recovery, …

Management Issues
• Policy

– Privacy, access control, appropriate use, …

• Training

– System staff, organization staff, “end users”

• Operations

– Fault detection and response

– Backup and disaster recovery

– Audit

– Cost control (system staff, periodic upgrades, …)

• Planning

– Capacity assessment, predictive reliability, …

Strategic Choices

• Acquisition

– Proprietary (“COTS”)

– Open source

• Implementation

– Integrate “Best-of-breed” systems

– “One-off” custom solution

Open Source “Pros”

• More eyes  fewer bugs

• Iterative releases  rapid bug fixes

• Rich community  more ideas

– Coders, testers, debuggers, users

• Distributed by developers  truth in advertising

• Open data formats  Easier integration

• Standardized licenses

Open Source “Cons”

• Communities require incentives

– Much open source development is underwritten

• Developers are calling the shots

– Can result in feature explosion

• Proliferation of “orphans”

• Diffused accountability

– Who would you sue?

• Fragmentation

– “Forking” may lead to competing versions

• Little control over schedule

Open Source Business Models

• Support Sellers

• Loss Leader

• Widget Frosting

• Accessorizing

Sell distribution, branding, and after-sale services.

Give away the software to make a market for proprietary software.

If you’re in the hardware business, giving away software doesn’t hurt.

Sell accessories:

books, compatible hardware, complete systems with pre-installed software

Total Cost of Ownership

Summary

• Systems analysis

– Required for complex multi-person tasks

• User-centered design

– Multiple stakeholders complicate the process

• Implementation

– Architecture, open standards, …

• Management

– Typically the biggest cost driver

