
Web Infrastructure

Week 3

INFM 603

The Key Ideas

• Questions

• Structured Programming

• Modular Programming

• Data Structures

• Object-Oriented Programming

Algorithms

• A finite sequence of well-defined

instructions designed to accomplish a

certain task

• Named for the Persian mathematician

Al-Khwarizmi

High level Languages

• Procedural (modular) Programming

– Group instructions into meaningful abstractions

– C, Pascal, Perl

• Object oriented programming

– Group “data” and “methods” into “objects”

– Naturally represents the world around us

– C++, Java, JavaScript, PHP, Ruby

Basic Control Structures

• Sequential

– Perform instructions one after another

• Conditional

– Perform instructions contingent on something

• Repetition

– Repeat instructions until a condition is met

Not much different from cooking recipes!

Sequential Control Structure

 a = 2;

 b = 3;

 c = a * b;

Conditional Selection Control

Structure
if (gender == “male”) {

 greeting = “Hello, Sir”;

} else {

 greeting = “Hello, Madam”;

}

switch (gender) {

 case “male”:

 greeting = “Hello, Sir”;

 break;

 default:

 greeting = “Hello, Madam”

}

Boolean Operators

• x == y true if x and y are equal [use == not =]

• x != y true if x and y are not equal

• x > y true if x is greater than y

• x <= y true if x is smaller than or equal to y

• x && y true if both x and y are true

• x || y true if either x or y is true

• !x true if x is false

Repetition Control Structure

n = 0;

while (n<10) {

 document.writeln(n);

 n++;

}

for (n=0; n<10; n++) {

 document.writeln(n);

}

Key Ideas

• Flowcharts

• Pseudocode

• Stacking and Nesting

Group Exercise

• Calculate the value of a $10,000 investment at the

end of each year each year from a list of annual

percentage gains or losses, and make a note in

each year for which a constant 5% interest rate

would outperform the variable rate investment.
2001 −11.9%

2002 −22.1%

2003 28.7%

2004 10.9%

2005 4.9%

2006 15.8%

2007 5.5%

2008 −37.0%

2009 26.5%

2010 15.1%

Pair Exercises

• Print every even number below 873 in the

Fibonacci series (see Wikipedia definition).

• Print a 9x9 lower triangular matrix of asterisks.

• Prompt the user to enter a date (number of the

month and number of the day), check to see if

the date is valid (assume February has 28 days),

and reprompt until a valid date is entered.

Design Tips

• Protect against unexpected values

– Test the value of all user input

– Test the value of critical function parameters

• Verify that every loop will always terminate

– Include a bailout condition, and report it

• Always test for conditions explicitly

– Trap unexpected conditions with the final else

Programming Tips

• Attention to detail!

– Careful where you place that comma, semicolon, etc.

• Don’t get cute with the logic or the layout

– Reflect the structure of your problem clearly

– Use standard “design patterns”

• Write a little bit of code at a time

– Add some functionality, make sure it works, move on

• Debug by viewing the “state” of your program

– Print values of variables using document.writeln();

Documentation Tips

• Reflect your pseudocode in your code

– Use meaningful variable names

– Use functions for abstractable concepts

• And name those functions well

– Use comments to fill remaining gaps

• Add a comment to identify each revision

– Give author, date, nature of the change

• Waste space effectively

– Use indentation and blank lines to guide the eye

Arrays

• A set of elements

– For example, the number of days in each month

• Each element is assigned an index

– A number used to refer to that element

• For example, x[4] is the fifth element (count from zero!)

– Arrays and repetitions work naturally together

Using JavaScript with Forms

HTML:

<form name="input" action="">

 Please enter a number:

 <input size="10" value=" " name="number"/>

</form>

<form name="output" action="">

 The sum of all numbers up to the number above is

 <input size="10" value=" " name="number" readonly="true"/>

</form>

JavaScript:

var num = eval(document.input.number.value);

document.output.number.value = 10;

Reads in a value from the first form

(eval method turns it into a number)

Changes the value in the second form

Functions (non-object “Methods”)

• Reusable code for complex “statements”

– Takes one or more values as “parameters”

– Returns at most one value as the “result”

 function convertToCelsius(f) {

 var celsius = 5/9 * (f-32);

 return celsius;

}
c = convertToCelsius(60);

function convertToCelsius(f) {

 var celsius = 5/9 * (f-32);

 return celsius;

}

var f = 60;

c = convertToCelsius(f);

Writing JavaScript Functions

• Convenient to put it in the <head> section

– Use <!-- … //--> to prevent display of code

…

<head>

<script language="JavaScript" type="text/javascript">

<!--

function calculate() {

 var num = eval(document.input.number.value);

…

 document.output.number.value = total;

}

//-->

</script>

</head>

…

Scope of a Variable

• In JavaScript, var “declares” a variable

var mystery; create a variable without defining its type

var b = true; create a boolean b and set it to true

var n = 1; create an integer n and set it to 1

var s = “hello”; create a string s and set it to “hello”

• Variables declared in a function are “local”

• Same name outside function refers to different variable

• All other variables are “global”

Some Useful Predefined “Methods”

• document.writeln(“…”);

– String gets rendered as (X)HTML

– Include “
” to force a line break

• window.alert(“…”);

– String is written verbatim as text

– Include “\n” to force a line break

• foo = window.prompt(“…”);

– String is shown verbatim as text

– Result is whatever string the user enters

Handling Events

• Events:

– Actions that users perform while visiting a page

• Use event handlers to response events

– Event handlers triggered by events

– Examples of event handlers in Javascript

• onMouseover: the mouse moved over an object

• onMouseout: the mouse moved off an object

• onClick: the user clicked on an object

Before You Go

 On a sheet of paper, answer the following

(ungraded) question (no names, please):

 What was the muddiest point in

today’s class?

