
Software Assurance

Session 13
INFM 603

Bugs, process, assurance

 Software assurance: quality assurance for software

 Particularly assurance of security

 Bad (buggy, insecure software) comes not from
discrete, unpredictable, uncontrollable human errors,
but from bad processes.

 We can't control human fallibility, but we can
control processes

Today: from hands-on to meta-
process

 Today's session:

 Hands-on vulnerability detection and correction (bug-

hunting)

 Methods and processes for preventing, correcting, and
managing bugs and vulnerabilities

 Models for measuring and improving processes

 Bug-hunting in a simple web-app

 Webapp allows users to log in and record their SSN
(see separate code, running site)

 Written (directly) in PHP, backed by MySQL
database

 Find the vulnerabilities!

(switch to browser)

Testing

 Manual vs. automated testing

 What are their pros and cons?

 How can you design to facilitate automation?

 Unit, integration, and system testing

 Test: components separately; integrated subsystems; then
full system for implementation of requirements

 How to design for this model of testing?

 Regression testing, and test-driven development

 Keep bugs fixed; keep non-bugs absent; test, then code

(jump to example)

Coding practice

 Coding standards

 Layout: readable code easier to debug

 Practice: avoid common pitfalls, build code in expected
manner

 Code review

 Computers don't criticize; other coders do!

 Formalized in pair programming

 Code less

 Bugs per 100 lines surprisingly invariant

 Maximise re-use of code, yours and others

Design, proof, etc.

 Care in design of product

 Bad design leads t o messy workarounds; messy
workarounds lead to bugs and vulnerabilities

 Formal and semi-formal proofs of correctness and
code checkers

 Use appropriate libraries, levels of abstraction

 Catch mistakes early!

 The later in the development process you find bugs, the
more difficult and expensive they are to fix.

Debugging is harder than coding!

“Debugging is twice as hard as writing the code in the
first place. Therefore, if you write the code as
cleverly as possible, you are, by definition, not smart
enough to debug it”

– Brian W. Kernighan and P. J. Plauger, The Elements
of Programming

Bug hunting and vulnerability
spotting

 Bugs are your code not behaving as you designed it.

 Many can be found by testing for expected behaviour

 Users report, workaround bugs

 Maximum damage is normally loss of functionality

 Security vulnerabilities are someone smart making
your system doing something unanticipated

 Difficult to test for in routine way

 Valuable knowledge to others; may not be reported!

 Maximum damage: ???

Security requires experience

 Develop knowledge of possible types of security
vulnerability (buffer overflow, SQL injection, etc.)

 Brainstorm possible vulnerabilities

 Act as or employ white-hat hacker

 Monitor security updates for packages you use

 Reduce attack surface area

 Learn from the mistakes of others!

(switch to CERT)

Managing bugs and vulnerabilities

 Even with good processes, (alleged) bugs will still
turn up in system-level products, both in
development and in deployment

 Tools for managing, tracking, performing statistics
on such bugs and vulnerabilities essential,
particularly on large projects.

 A core tool is the bug tracker

(jump to Bugzilla)

Developing and measuring process

 Heroic age of software development: small teams of
programming demigods wrestle with many-limbed
chaos to bring project to success, or die in the
attempt.

 Kind of fun for programmers ...

 … not so fun for project stakeholders

 Current age of managed development:design
controllable, measurable, repeatable processes for
managing software development.

Models for software quality
assurance

 Models and standards developed for software
assurance, after pattern of other quality assurance
standards (e.g. ISO 9000)

 Models don't tell you how to write good software

 … and they don't tell you what process to use to
build good software

 They provide a yardstick for measuring the quality
of your process management

 They measure whether you can measure your
process

CMMI Maturity Levels

CMMI has five levels of process maturity (with
process areas to verify at each level):

1.Initial

2.Managed (e.g. Measurement and Analysis)

3.Defined (e.g. Organizational Process Focus)

4.Quantitatively Managed (e.g. Quantitative Project
Management)

5.Optimizing (e.g. Causal Analysis and Resolution)

ISO 15504

ISO 15504 has six capability levels (each practice
develops through these levels):

1. Not performed

2. Performed informally

3. Planned and tracked

4. Well-defined

5. Quantitatively controlled

6. Continuously improved

Qualitative, Quantitative, Improved

Both CMMI and ISO 15504 embed the same
sequence:

1.Qualitative management (e.g. process for code
reviews, testing, etc.)

2.Quantitative management (metrics of performance)

3.Improvement (change process, check with metrics
that improvement in quality results)

Example: MS SDL process

Process: Security Development Lifecycle (SDL)

Metric: Bug count (critical and serious, within year of
release), on product versions before and after
adoption of SDL.

Result:

 Product Pre-SDL Post-SDL

Windows 2000/2003 62 24

SQL Server 2000 16 3

Exchange Server 2000 8 2

Applying Bug Count

(jump to Bugzilla)

 How good a metric of software quality is “number
of oustanding bugs”?

 Are there other reasons you (as a manager) might
want to introduce it as a metric?

 What would you expect to be the most immediate
effect if you introduced it as a metric (and tied
programmer appraisal to it)?

