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Software

 Software represents an aspect of reality
— Input and output represent the state of the world
— Software describes how the two are related

» Programming languages specify the model
— Data structures model things
— Structured programming models actions
— Object-oriented programming links the two

A development process organizes the effort




The Waterfall Model

« Key Insight: invest In the design stage
— An hour of design can save a week of debugging!

* Three key documents

— Requirements

« Specifies what the software is supposed to do
— Specification

 Specifies the design of the software

— Test plan
 Specifies how you will know that it did it
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The Spiral Model

Build what you think you need
— Perhaps using the waterfall model

Get a few users to help you debug it

— First an “alpha” release, then a “beta’ release
Release It as a product (version 1.0)
— Make small changes as needed (1.1, 1.2, ....)

Save big changes for a major new release
— Often based on a total redesign (2.0, 3.0, ...)



The Spiral Model
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Unpleasant Realities

* The waterfall model doesn’t work well
— Requirements usually incomplete or incorrect

» The spiral model is expensive
— Rule of thumb: 3 iterations to get it right
— Redesign leads to recoding and retesting



The Rapid Prototyping Model

Goal: explore requirements
— Without building the complete product

Start with part of the functionality
— That will (hopefully) yield significant insight

Build a prototype
— Focus on core functionality, not in efficiency

Use the prototype to refine the requirements
Repeat the process, expanding functionality




Rapid Prototyping + Waterfall
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Objectives of Rapid Prototyping

« Quality
— Build systems that satisfy the real requirements
by focusing on requirements discovery

 Affordability

— Minimize development costs by building the
right thing the first time

e Schedule

— Minimize schedule risk by reducing the chance
of requirements discovery during coding



The Specification

» Formal representation of the requirements

» Represent objects and their relationships
— Using a constrained entity-relationship model

 Specify how the behavior is controlled
— Activity diagrams, etc.



Characteristics of Good Prototypes

» Easily built (about a week’s work)

— Requires powerful prototyping tools

— Intentionally incomplete
* Insightful

— Basis for gaining experience

— Well-chosen focus (DON’T built it all at once!)
 Easily modified

— Facilitates incremental exploration



Prototype Demonstration

Choose a scenario based on the task

Develop a one-hour script
— Focus on newly implemented requirements

See If It behaves as desired
— The user’s view of correctness

Solicit suggestions for additional capabilities
— And capabilities that should be removed



A Disciplined Process

Aqgree on a project plan
— To establish shared expectations

Start with a requirements document
— That specifies only bedrock requirements

Build a prototype and try it out
— Informal, focused on users -- not developers

Document the new requirements
Repeat, expanding functionality in small steps



What Is NOT Rapid Prototyping?

Focusing only on appearance
— Behavior Is a key aspect of requirements

Just building capabilities one at a time
— User involvement is the reason for prototyping

Building a bulletproof prototype
— Which may do the wrong thing very well

Discovering requirements you can’t directly use
— More efficient to align prototyping with coding




Evolutionary life-cycle
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Comparing Agile Methods
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