Software Engineering

Session 12
INFM 603

Software

 Software represents an aspect of reality
— Input and output represent the state of the world
— Software describes how the two are related

» Programming languages specify the model
— Data structures model things
— Structured programming models actions
— Object-oriented programming links the two

A development process organizes the effort

The Waterfall Model

« Key Insight: invest In the design stage
— An hour of design can save a week of debugging!

* Three key documents

— Requirements

« Specifies what the software is supposed to do
— Specification

 Specifies the design of the software

— Test plan
 Specifies how you will know that it did it

The Waterfall Model

&
Specification ._f g

.).
Test Plan e
B

\

The Spiral Model

Build what you think you need
— Perhaps using the waterfall model

Get a few users to help you debug it

— First an “alpha” release, then a “beta’ release
Release It as a product (version 1.0)
— Make small changes as needed (1.1, 1.2,)

Save big changes for a major new release
— Often based on a total redesign (2.0, 3.0, ...)

The Spiral Model

12 2.3
0.5
1.1 2.2
1.0
2.1
2.0

3.0

Unpleasant Realities

* The waterfall model doesn’t work well
— Requirements usually incomplete or incorrect

» The spiral model is expensive
— Rule of thumb: 3 iterations to get it right
— Redesign leads to recoding and retesting

The Rapid Prototyping Model

Goal: explore requirements
— Without building the complete product

Start with part of the functionality
— That will (hopefully) yield significant insight

Build a prototype
— Focus on core functionality, not in efficiency

Use the prototype to refine the requirements
Repeat the process, expanding functionality

Rapid Prototyping + Waterfall

Update

Requirements

Initial
Requirements

Write

Specification

Choose

: Functionality

Build
Prototype

Create
Software

Write

Test Plan

Objectives of Rapid Prototyping

« Quality
— Build systems that satisfy the real requirements
by focusing on requirements discovery

 Affordability

— Minimize development costs by building the
right thing the first time

e Schedule

— Minimize schedule risk by reducing the chance
of requirements discovery during coding

The Specification

» Formal representation of the requirements

» Represent objects and their relationships
— Using a constrained entity-relationship model

 Specify how the behavior is controlled
— Activity diagrams, etc.

Characteristics of Good Prototypes

» Easily built (about a week’s work)

— Requires powerful prototyping tools

— Intentionally incomplete
* Insightful

— Basis for gaining experience

— Well-chosen focus (DON’T built it all at once!)
 Easily modified

— Facilitates incremental exploration

Prototype Demonstration

Choose a scenario based on the task

Develop a one-hour script
— Focus on newly implemented requirements

See If It behaves as desired
— The user’s view of correctness

Solicit suggestions for additional capabilities
— And capabilities that should be removed

A Disciplined Process

Aqgree on a project plan
— To establish shared expectations

Start with a requirements document
— That specifies only bedrock requirements

Build a prototype and try it out
— Informal, focused on users -- not developers

Document the new requirements
Repeat, expanding functionality in small steps

What Is NOT Rapid Prototyping?

Focusing only on appearance
— Behavior Is a key aspect of requirements

Just building capabilities one at a time
— User involvement is the reason for prototyping

Building a bulletproof prototype
— Which may do the wrong thing very well

Discovering requirements you can’t directly use
— More efficient to align prototyping with coding

Evolutionary life-cycle

b

(Gilb, 1988)

Agile Methods

Prototyping methodology

(e.g., Lantz, 1986)

Spiral model
(Boehm, 1986; 1988)

New product

development game Concurrent-devel
process model (Aoydma,
1987; 1993)

Object oriented X
approaches (Takeuchi and
1990 - Rapid application Nonaka, 1986)
development (RAD)
(e.g., Martin, 1991)
/ Scrum development
process
RADical software (Schwaber, 1995;
development (Bayer R Schwaber and
Sy Dynamic systems
and Highsmith, 1994) development method Beedle, 2001)
v (DSDM, 1995; 2003)
U:]Lﬁcd modeling
lanjguage (UML) Crystal family
of methodologies . Extreme Programming (XP)
(Cockburn, 1998; 2001) (Beck, 1999)
Adaptive Software Development
2000 < Rational Unified (ASD) (Highsmith, 2000)

Process (RUP)
(Kruchten, 2000)

Feature-Drniven
Development (FDD)

(Palmer and Felsing, 2002)

Agile manifesto

New paradigms for
SW development
(Agresti, 1986)

v 1995; 1997)

Internet

technologies,
distributed sofiya (Kumarand oy e1onment
development

Synch-and-stabilize
approach (Microsoft)
(Cusumano and Selby,

Agile Software
Process model (ASP)
Ayoama, 1998a; 1998b

Fiction of universal methods
(Malouin and Landry, 1983)

Japanese production
systems; Lean development
(Ohno, 1988)

"

r

Methodology
Engincering o methodological IS

Welke, 1992) (Baskerville, 1992;

Open

v

Truex etal, 2001)

Source

Software (OSS)
development

IS development in
emergent organizations
(Truex et al., 1999)

Internet-speed development (ISD)
(Cusumano and Yoffie, 1999;
Baskerville et al., 2001:

Baskerville and Prics-Heje. 2001)

-

(Beck etal., 2001) Pragmatic
Programming (PP)
. . (Hunt and Thomas,
Agile Modeling (AM) | 2000)
x| (Ambler, 2002) h

2003)

Lean software development
(Poppendieck and Poppendieck

Comparing Agile Methods

ASD L L) ¥ i
AM : : : i i
ASP ' 5 i
Crystal ! E : i
I' L : : i i i :
DSDM ¢ : 1
XP | : E i i
FDD 1 i
ISD | . !
PP i
Scrum |] I
A i i ! ! ! { i i
] I | 1 L)) 1 1 I
Project Requirements Design Code Unit test Integration System Acceptance System
inception specification test test test in use

Process described —— [

A

Project management supported
Offers concrete guidance

