
Software Engineering 

Session 12 

INFM 603 



Software 

• Software represents an aspect of reality 

– Input and output represent the state of the world 

– Software describes how the two are related 
 

• Programming languages specify the model 

– Data structures model things 

– Structured programming models actions 

– Object-oriented programming links the two 
 

• A development process organizes the effort 



The Waterfall Model 

• Key insight: invest in the design stage 

– An hour of design can save a week of debugging! 

• Three key documents 

– Requirements 

• Specifies what the software is supposed to do 

– Specification 

• Specifies the design of the software 

– Test plan 

• Specifies how you will know that it did it 



The Waterfall Model 

Requirements 

Specification 

Software 

Test Plan 



The Spiral Model 

• Build what you think you need 

– Perhaps using the waterfall model 

• Get a few users to help you debug it 

– First an “alpha” release, then a “beta” release 

• Release it as a product (version 1.0) 

– Make small changes as needed (1.1, 1.2, ….) 

• Save big changes for a major new release 

– Often based on a total redesign (2.0, 3.0, …) 



The Spiral Model 

1.0 

0.5 

2.0 

3.0 

1.1 

1.2 

2.1 

2.2 

2.3 



Unpleasant Realities 

• The waterfall model doesn’t work well 

– Requirements usually incomplete or incorrect 

 

• The spiral model is expensive 

– Rule of thumb: 3 iterations to get it right 

– Redesign leads to recoding and retesting 



The Rapid Prototyping Model 

• Goal: explore requirements 

– Without building the complete product 

• Start with part of the functionality 

– That will (hopefully) yield significant insight 

• Build a prototype 

– Focus on core functionality, not in efficiency 

• Use the prototype to refine the requirements 

• Repeat the process, expanding functionality 



Rapid Prototyping + Waterfall 

Update 

Requirements 

Choose 

Functionality 

Build 

Prototype 

Initial 

Requirements 

Write 

Specification 

Create 

Software 

Write 

Test Plan 



Objectives of Rapid Prototyping 

• Quality 

– Build systems that satisfy the real requirements 

by focusing on requirements discovery 

• Affordability 

– Minimize development costs by building the 

right thing the first time 

• Schedule 

– Minimize schedule risk by reducing the chance 

of requirements discovery during coding 



The Specification 

• Formal representation of the requirements 

 

• Represent objects and their relationships 

– Using a constrained entity-relationship model 

 

• Specify how the behavior is controlled 

– Activity diagrams, etc. 



Characteristics of Good Prototypes 

• Easily built (about a week’s work) 

– Requires powerful prototyping tools 

– Intentionally incomplete 

• Insightful 

– Basis for gaining experience 

– Well-chosen focus (DON’T built it all at once!) 

• Easily modified 

– Facilitates incremental exploration 



Prototype Demonstration 

• Choose a scenario based on the task 

• Develop a one-hour script 

– Focus on newly implemented requirements 

• See if it behaves as desired 

– The user’s view of correctness 

• Solicit suggestions for additional capabilities 

– And capabilities that should be removed 



A Disciplined Process 

• Agree on a project plan 

– To establish shared expectations 

• Start with a requirements document 

– That specifies only bedrock requirements 

• Build a prototype and try it out 

– Informal, focused on users -- not developers 

• Document the new requirements 

• Repeat, expanding functionality in small steps 



What is NOT Rapid Prototyping? 

• Focusing only on appearance 

– Behavior is a key aspect of requirements 

• Just building capabilities one at a time 

– User involvement is the reason for prototyping 

• Building a bulletproof prototype 

– Which may do the wrong thing very well 

• Discovering requirements you can’t directly use 

– More efficient to align prototyping with coding 



Agile Methods 



Comparing Agile Methods 


