.\l'\'.'l"-:“:l':r

@& College of Information Studies

o =
éﬂl‘?ﬁ 'I..E“-::‘ University of Maryland Hombake Library Building College Parck, MD 2074 2-4345

Encryption

Session 9
INST 346

SimEIe encryption scheme

substitution cipher: substituting one thing for another
* monoalphabetic cipher: substitute one letter for another

plaintext: abcdefghijklImnopgrstuvwxyz

|

ciphertext: mnbvcxzasdfghjklpoiuytrewq

e.g.. Plaintext: bob. 1 love you. alice
ciphertext: nkn. s gktc wky. mgsbc

€= Encryption key: mapping from set of 26 letters
to set of 26 letters

Stream and Block Ciphers

= n substitution ciphers, M|,M,,...,M_
= cycling pattern:
e eg., n=4: M,M;,M,M;;M,; M, ,M;;M,M;,M,; ..
e random initialization
* for each new plaintext symbol, use subsequent
substitution pattern in cyclic pattern
e dog: d from M|, o from M;, g from M,

Encryption key: n substitution ciphers, and cyclic
pattern

AES: Advanced Encryption Standard

* symmetric-key NIST standard, replaced DES
(Nov 2001)

" processes data in |28 bit blocks
= |28, 192, or 256 bit keys

= brute force decryption (try each key) taking | sec
on DES, takes 149 trillion years for AES

Public Key Crxgtograghx

symmetric key crypto

" requires sender, receiver
know shared secret key

"= Q: how to agree on key in
first place (partlcularly if
never “met’)?

— public key crypto
" radically different
approach [Diffie-
Hellman76, RSA78]

= sender, receiver do not
share secret key

= public encryption key
known to all

" private decryption key
known only to receiver

Public key crxgtograEhZ

_________________ @= K Bob’s public
KB key

K Bob’ s private

: B key
! a0
L ChE
|
plaintext ciphertext de ry_tlon plajntext
message, m K+(m) algorithm EEEEEL[E
B

m = K (K (m))

Public key encryption algorithms

requirements:

@ need K;(-) and KI'B(.) such that
-+
KK (m)) = m

@ given public key Kg, it should be
Impossible to compute private
key K;S

RSA: Rivest, Shamir, Adelson algorithm

RSA: Creating public/private key pair

|. choose two large prime numbers p, q.
(e.g., 1024 bits each)

2.compute n = pq, z = (p-1)(g-1)

3. choose e (with e<n) that has no common factors
with z (e, z are “relatively prime”).

4. choose d such that ed-| is exactly divisible by z.
(in other words:ed mod z = [).

5. public key is (n,e). private key is (n,d).
public key is (n,e). private key is (n,d)

+ -

KB Kg

RSA: encryption, decryption

0. given (n,e) and (n,d) as computed above

|. to encrypt message m (<n), compute

€

c=m®®mod n

2. to decrypt received bit pattern, ¢, compute
d

m=cYYmod n

m = (m® mod n)dmod n

C

RSA example:

Bob chooses p=5, g=7. Then n=35, z=24.

e=5 (so e, z relatively prime).
d=29 (so ed-1 exactly divisible by z).

encrypting 8-bit messages.

e e

bit pattern M m c=m-mod n
encrypt: ‘ T — v
0000I000 12 24832 17
d d

C C =
decrypt: —— @ Ny © Ymod n,

17 481968572106750915091411825223071697 12

RSA: an important property

= + _ . + -
KB(K B(m)) =m = K EgK ém))
use public key first, use private key
followed by first, followed by
private key public key

result is the same!

Why is RSA secure!

= suppose you know Bob’ s public key (n,e). How
hard is it to determine d?

= essentially need to find factors of n without
knowing the two factors p and g

e fact: factoring a big number is hard

RSA in practice: session keys

= exponentiation in RSA is computationally
Intensive

= DES is at least 100 times faster than RSA

= use public key crypto to establish secure
connection, then establish second key —
symmetric session key — for encrypting data

session key, K
= Bob and Alice use RSA to exchange a symmetric key K
= once both have K, they use symmetric key cryptography

Digital signatures

cryptographic technique analogous to hand-written
sighatures:

= sender (Bob) digitally sighs document, establishing
he is document owner/creator.

= verifiable, nonforgeable: recipient (Alice) can prove to
someone that Bob, and no one else (including Alice),
must have signed document

Digital signatures

simple digital signature for message m:

= Bob sighs m by encrypting with his private key Kg,
creating “signed” message, Kg(m)

Bob’ s message, m @—:9 K g E;? S private m,K (M)

Dear Alice
Oh, how | have missed Public k s aomeage:
, NOW ave misse uplic Ke :
you. I think of you all the €y m, signed
encryption (encrypted) with

time! ...(blah blah blah)
Bob algorithm his private key

In practice, this is done more efficiently on message digests

Digital signatures

= suppose Alice receives msg m, with signature: m, Ky(m)

= Alice verifies m signed by Bob by applying Bob' s public key K;
to Kqa(m) then checks Ky(Ka(m)) = m.

= If K4(Ka(m)) = m, whoever signed m must have used Bob’ s
private key.

Alice thus verifies that:

= Bob signed m

" no one else signed m

= Bob signed mand notm
non-repudiation:

v" Alice can take m, and signature K_B(m) to court and
prove that Bob signed m

Message digests - m

message

m

goal: fixed-length, easy-

to-compute digital H(m)
“fingerprint”
= apply hash function H to Hash function properties:
m, get fixed size message = many-to-|
digest, H(m).

" produces fixed-size msg
digest (fingerprint)
" given message digest X,

computationally infeasible to
find m such that x = H(m)

TCP checksum: poor crypto hash function

Internet checksum has some properties of hash function:

» produces fixed length digest (|6-bit sum) of message
" |S many-to-one

But given message with given hash value, it is easy to find another
message with same hash value:

message ASCII format message ASCII format
IOU1 49 4F 55 31 O U9 49 4F 55 39
00.9 30 30 2E 39 00.1 30 30 2E 31
9B OB 3942 D2 42 9BOB 3942 D2 42

but identical checksums!

Widely used hash functions

= MD5 (RFC 1321) has known vulnerabilities

e computes |28-bit message digest in 4-step process

= SHA-I is widely used but is deprecated
e US standard [NIST, FIPS PUB 180-1]
e |60-bit message digest
e Collision attack with 1000 GPUs in a month
= SHA-2 and SHA-3 are now available
e Also standardized by NIST
* More secure, but slower (in software)

Before You Go

On a sheet of paper, answer the following
(ungraded) question (no names, please):

What was the muddiest point In
today’s class?

	Encryption
	Simple encryption scheme
	Stream and Block Ciphers
	AES: Advanced Encryption Standard
	Public Key Cryptography
	Public key cryptography
	Public key encryption algorithms
	RSA: Creating public/private key pair
	RSA: encryption, decryption
	RSA example:
	RSA: an important property
	Why is RSA secure?
	RSA in practice: session keys
	Digital signatures
	Digital signatures
	Digital signatures
	Message digests
	TCP checksum: poor crypto hash function
	Widely used hash functions
	Before You Go

