
Networked System Architectures

Session 28
INST 346

Technologies, Infrastructure and Architecture

Goals for Today

• Internet Architectures

• Building an Internet app

Creating a network app

write programs that:
 run on (different) end systems
 communicate over network
 e.g., web server software

communicates with browser
software

no need to write software
for network-core devices

 network-core devices do not
run user applications

 applications on end systems
allows for rapid app
development, propagation

application
transport
network
data link
physical

application
transport
network
data link
physical

application
transport
network
data link
physical

Client-server architecture (e.g., Web)

server:
 always-on host
 permanent IP address
 data centers for scaling

clients:
 communicate with server
 may be intermittently

connected
 may have dynamic IP

addresses
 do not communicate directly

with each other

client/server

P2P architecture (e.g., Skype)
 no central server
 arbitrary end systems

directly communicate
 peers request service from

other peers, provide service
in return to other peers
• self scalability – new

peers bring new service
capacity, as well as new
service demands

 peers are intermittently
connected and change IP
addresses
• complex management

peer-peer

App-layer protocol must define:
 types of messages

• e.g., request, response
 message syntax

• what fields in messages
• how fields are delineated

 message semantics
• meaning of information in fields

 rules for when and how processes send & respond to messages

“open” protocols:
 e.g., HTTP, SMTP
 defined in “Requests for Comment” (RFC’s)
 designed for interoperability
proprietary protocols:
 e.g., Skype

Socket programming

goal: learn how to build client/server applications that
communicate using sockets

socket: outbox/inbox between application process and
end-end-transport protocol

Internet

controlled
by OS

controlled by
app developer

transport

application

physical
link

network

process

transport

application

physical
link

network

process
socket

Socket programming

Two socket types for two transport services:
• UDP: unreliable datagram
• TCP: reliable, byte stream-oriented

Application Example:
1. client reads a line of characters (data) from its

keyboard and sends data to server
2. server receives the data and converts characters

to uppercase
3. server sends modified data to client
4. client receives modified data and displays line on

its screen

Client/server socket interaction: UDP

close
clientSocket

read datagram from
clientSocket

create socket:
clientSocket =
socket(AF_INET,SOCK_DGRAM)

Create datagram with server IP and
port=x; send datagram via
clientSocket

create socket, port= x:
serverSocket =
socket(AF_INET,SOCK_DGRAM)

read datagram from
serverSocket

write reply to
serverSocket
specifying
client address,
port number

server (running on serverIP) client

Example app: UDP client

from socket import *
serverName = ‘localhost’
serverPort = 12000
clientSocket = socket(AF_INET,

SOCK_DGRAM)
message = input(’Input lowercase sentence:’)
clientSocket.sendto(message.encode(),

(serverName, serverPort))

modifiedMessage, serverAddress =
clientSocket.recvfrom(2048)

print(modifiedMessage.decode())
clientSocket.close()

Python UDPClient
include Python’s socket
library

create UDP socket for
server

get user keyboard
input

Attach server name, port to
message; send into socket

print out received string
and close socket

read reply characters from
socket into string

Example app: UDP server

from socket import *
serverPort = 12000
serverSocket = socket(AF_INET, SOCK_DGRAM)
serverSocket.bind(('', serverPort))
print (“The server is ready to receive”)
while True:

message, clientAddress = serverSocket.recvfrom(2048)
modifiedMessage = message.decode().upper()
serverSocket.sendto(modifiedMessage.encode(),

clientAddress)

Python UDPServer

create UDP socket

bind socket to local port
number 12000

loop forever

Read from UDP socket into
message, getting client’s
address (client IP and port)

send upper case string
back to this client

Running Python
 Install the latest Python 3 from:

• https://www.python.org/downloads/
 Download the programs

• Materials used in class link from schedule
 Open two shell windows

• On a PC, type “cmd” in the search box
• On a Mac, open a terminal

 In one shell, type:
• python udpserver.py

 In the other, type:
• python udpclient.py

Socket programming with TCP

client must contact server
 server process must first be

running
 server must have created

socket that welcomes
client’s contact

client contacts server by:
 Creating TCP socket,

specifying IP address, port
number of server process

 when client creates socket:
client TCP establishes
connection to server TCP

 when contacted by client,
server TCP creates new socket
for server process to
communicate with that
particular client
• allows server to talk with

multiple clients
• source port numbers used

to distinguish clients
(more in Chap 3)

TCP provides reliable, in-order
byte-stream transfer (“pipe”)
between client and server

application viewpoint:

Client/server socket interaction: TCP

wait for incoming
connection request
connectionSocket =
serverSocket.accept()

create socket,
port=x, for incoming
request:
serverSocket = socket()

create socket,
connect to hostid, port=x
clientSocket = socket()

server (running on hostid) client

send request using
clientSocketread request from

connectionSocket

write reply to
connectionSocket

TCP
connection setup

close
connectionSocket

read reply from
clientSocket

close
clientSocket

Example app: TCP client

from socket import *
serverName = ’localhost’
serverPort = 12000
clientSocket = socket(AF_INET, SOCK_STREAM)
clientSocket.connect((serverName,serverPort))
sentence = input(‘Input lowercase sentence:’)
clientSocket.send(sentence.encode())
modifiedSentence = clientSocket.recv(1024)
print (‘From Server:’, modifiedSentence.decode())
clientSocket.close()

Python TCPClient

create TCP socket for
server, remote port 12000

No need to attach server
name, port

Example app: TCP server

from socket import *
serverPort = 12000
serverSocket = socket(AF_INET,SOCK_STREAM)
serverSocket.bind((‘’,serverPort))
serverSocket.listen(1)
print(‘The server is ready to receive’)
while True:

connectionSocket, addr = serverSocket.accept()

sentence = connectionSocket.recv(1024).decode()
capitalizedSentence = sentence.upper()
connectionSocket.send(capitalizedSentence.

encode())
connectionSocket.close()

Python TCPServer

create TCP welcoming
socket

server begins listening for
incoming TCP requests

loop forever

server waits on accept()
for incoming requests, new
socket created on return

read bytes from socket (but
not address as in UDP)

close connection to this
client (but not welcoming
socket)

	Networked System Architectures
	Goals for Today
	Creating a network app
	Client-server architecture (e.g., Web)
	P2P architecture (e.g., Skype)
	App-layer protocol must define:
	Socket programming
	Socket programming
	Client/server socket interaction: UDP
	Slide Number 10
	Slide Number 11
	Running Python
	Socket programming with TCP
	Client/server socket interaction: TCP
	Slide Number 15
	Slide Number 16

