@& College of Information Studies

2 =
%?ﬁ 'I..E“-f‘ University of Maryvland Hombake Library Building College Pack, MD 20742-4345

TCP

Session 22
INST 346
Technologies, Infrastructure and Architecture

Improving Support for Learning

Less lecture, more discussion, slow down
More examples and lab-style homework
In-class activities

Discuss homework and quizzes in class

Solicit topics In advance for exam review

NMnro r erlnnc (1)
ITVINUVI | 3\) \ /

Jump around less on the slides
More extensive exam study guide
More quiz questions (1)

Goals

. TCP

— Connection Setup
— Reliable Transfer
— Timeout Setting
— Flow Control

— Disconnection

 Maybe: BGP

TCP: Overview Recs: 793.1122.1323, 2018, 2581

" point-to-point: " full duplex data:
e one sender, one receiver e bi-directional data flow
" reliable, in-order byte In same connection
steam: . MSS: maximum segment
“ size
. Egunﬂfﬁfeaf? " connection-oriented:
= pipelined: * handshaking (exchange

of control msgs) inits
sender, receiver state
before data exchange

* flow controlled:

e sender will not
overwhelm receiver

e TCP congestion and
flow control set window
size

TCP segment structure

< 32 bhits

\ 4

source port # dest port # counting
- 0 by bytes
ACK: ACK # sequence number of data

valid —{_acknowledgement number

head| ———
len A J,R

S|IF| receive window

bytes
rcvr willing
to accept

Urg data pointer

sum
RST, SYN, FIN:/ op/a(s (variable length)
connection estab

(setup, teardown
commands) L
application

Internet / | data
checksum (variable length)
(as in UDP)

Connection Management

before exchanging data, sender/receiver “handshake™:

" agree to establish connection (each knowing the other willing
to establish connection)

" agree on connection parameters

—‘
application

——

connection state: ESTAB
connection Variables:
seq # client-to-server
server-to-client
rcvBuffer size
at server,client

application

connection state: ESTAB
connection variables:
seq # client-to-server
server-to-client
rcvBuffer size
at server,client

V{ network network
Socket clientSocket = Socket connectionSocket =
newSocket('hostname", " port welcomeSocket.accept();

number™) ;

TCP 3-way handshake

client state : V./ H server state
LISTEN B LISTEN
choose init seq num, x
! send TCP SYN msg |~
SYNSENT SYNbit=1, Seq=x

choose init seq num, y
d TCP SYNACK
ool SYN RCVD

/ msg, acking SYN

SYNbit=1, Seq=y
ACKbit=1; ACKnum=x+1

v received SYNACK(X) /

indicates server is live;
ESTAB cend ACK for SYNACK: |~

this segment may contain ACKbit=1, ACKnum=y+1

client-to-server data _
\ received ACK(y)
indicates client is live

v

ESTAB

TCP sender events:

data rcvd from app: timeout:

" create segment with " retransmit segment
seq # that caused timeout

" seq # is byte-stream " restart timer
number of first data ack revd:

byte in segment = if ack acknowledges

" start timer if not previously unacked
already running segments
e think of timer as for e update what is known
oldest unacked to be ACKed
segment

e start timer if there are

* expiration interval: still unacked segments

TimeOutiInterval

TCP seq. numbers, ACKs

outgoing segment from sender

Sequence numbers' source port # dest port #
sequence number
i b)’te stream number of acknowledgement number
first byte in segment’ s || | wnd
d t checksum urg pointer
ata
window size
acknowledgements: N
expected from other side
sender sequence number space

e cumulative ACK
. . sent sent, not- usable not
Q~ how receiver handles ACKed yet ACKed but not usable
out-of-order segments %iér;]—t”) yet sent
* A: TCP spec doesn’ t say, incoming segment to sender
- up to |mplementor~ source port # dest port #
sequence number

Jl acknowledgement number

A rwnd

checksum urg pointer

TCP seqg. numbers, ACKs

H

A Host B

pst
User %f
types —~—
‘C! ‘ ,
Seq=42, ACK=79, data = C
d\» host ACKs
/ receipt of
‘C’, echoes
Seq=79, ACK=43, data = ‘C’ (s
host ACKs _— back ‘C
receipt
of echoed —~—____
‘C’ Seq=43, ACK:K

simple telnet scenario

TCP: retransmission scenarios

l—— timeout —>

\
Seq=92, 8 bytes of data
ACK=100
X

Seq=92, 8 bytes of data

/

ACK=100

—

lost ACK scenario

Host

B

H

SendBase=92

—— timeout ——

SendBase=100
SendBase=120

SendBase=120

ost A

E

Seq=92, 8 bytes of data

\

Seq=100, 20 bytes of dat

ACKzlo/

ACK=120

fif

Seq=92, 8
bytes of data\

\

ACK=120

\

premature timeout

Host B

TCP: retransmission scenarios

Host B

-

I
(@]
(7]
—+
>

/

Seq=92, 8 bytes of data

Seq=100, 20 bytes%fdg

ACK=100
X
ACK=120

oe———— timeout —*

\

Seq=120, 15 bytes of data

\

cumulative ACK

TCP ACK generation [RFC 1122, RFC 2581]

event at receiver TCP receiver action

arrival of in-order segment with delayed ACK. Wait up to 500ms
expected seq #. All data up to for next segment. If no next segment,
expected seq # already ACKed send ACK

arrival of in-order segment with immediately send single cumulative
expected seq #. One other ACK, ACKing both in-order segments
segment has ACK pending

arrival of out-of-order segment immediately send duplicate ACK,
higher-than-expect seq. # . indicating seq. # of next expected byte

Gap detected

arrival of segment that immediate send ACK, provided that
partially or completely fills gap segment starts at lower end of gap

TCP fast retransmit

" time-out period often
relatively long:

* long delay before
resending lost packet

" detect lost segments
via duplicate ACKs.

e sender often sends
many segments back-
to-back

* if segment is lost, there
will likely be many
duplicate ACKs.

— JCP fast retransmit —

if sender receives 3
ACKs for same data

(“triple duplicate ACKs"),
resend unacked
segment with smallest
seq #
" |ikely that unacked
segment lost, so don’ t

wait for timeout

TCP fast retransmit

Host A Host

d

— Seq=92, 8 bytes of data

\seqzloow
\X

ACK=100

ACK=100

%Kzloo

e
ACK=100

=
Seg=100, 20 bytes of data

\.

! '

fast retransmit after sender
receipt of triple duplicate ACK

Ja=

timeout

Y

TCP round trip time, timeout

Q: how to set TCP
timeout value!?

" [onger than RTT
e but RTT varies
" too short: premature

timeout, unnecessary
retransmissions

" too long: slow reaction
to segment loss

Q: how to estimate RTT?

= SampleRTT: measured
time from segment
transmission until ACK
receipt

* ignore retransmissions

= SampleRTT will vary, want
estimated RTT “smoother”

* average several recent
measurements, not just
current SampleRTT

TCP round trip time, timeout

EstimatedRTT = (1- a)*EstimatedRTT + a*SampleRTT

= exponential weighted moving average
" influence of past sample decreases exponentially fast
= typical value:a = 0.125

350 ~

RTT: gaia.cs.umass.edu to fantasia.eurecom.fr

T/)\ 300 1
©
c
: \ I
2 1 - I f
E
I: 200 1
o
¢ sampleRTT
EstimatedRTT

100

1 8 15 22 29 36 43 50 57 64 71 78 85 92 99 106

time (seconds)

TCP round trip time, timeout

" timeout interval: EstimatedRTT plus “safety margin”
* large variation in EStimatedRTT -> larger safety margin

= estimate SampleRTT deviation from EstimatedRTT:

DevRTT = (1-B)*DevRTT +
B*|SampleRTT-EstimatedRTT]

(typically, B = 0.25)

TimeoutlInterval = EstimatedRTT + 4*DevRkRTT

'/“ I I

estimated RTT “safety margin”

* Check out the online interactive exercises for more
examples: http://gaia.cs.umass.edu/kurose_ross/interactive/

TCP flow control

application may

application
process

remove data from

TCP socket buffers

... Slower than TCP
receiver is delivering —
(sender is sending)

— flow control

— A

r?

TCP socket
receiver buffers
N\

TCP
code

IP
code

receiver controls sender, so
sender won’ t overflow
receiver s buffer by transmitting
too much, too fast

|
e .
I l !
from sender

receiver protocol stack

TCP flow control

. 11 . 77
= receiver advertises free

buffer space by including to application process
rwnd value in TCP header rtj
of receiver-to-sender f
segments Rchufier buffered data
e RcvBuffer size set via T
socket options (typical default rwnd free buffer space
is 4096 bytes))|
* many operating systems t

autoadjust RcvBuffer

= sender limits amount of
unacked (“in-flight”) data to
receiver s rwnd value

" guarantees receive buffer
will not overflow

TCP segment payloads

recelver-side buffering

TCP: closing a connection

= client, server each close their side of connection
e send TCP segment with FIN bit = |

* respond to received FIN with ACK

 on receiving FIN, ACK can be combined with own FIN
= simultaneous FIN exchanges can be handled

TCP: closing a connection

client state V./ E server state
ESTAB s ESTAB
| clientSocket.close() \FINb.t 1
FIN. WAIT 1 can no longer =1, seq=x
n - send but can q\ v
receive data __— CLOSE_WAIT
! ACKbit=1; ACKnum=x+1 can still
FIN_ WAIT 2 wait for server —" send data
close
_— LAST ACK
’ ‘)Nbitzl, seq=y
TIMED WAIT —_ can no longer
- } e— send data
ACKbit=1; ACKnum=y+1
timed wait ~—~— v
for 2*max CLOSED

segment lifetime

CLOSED _',

Inter-AS routing is different
policy:

" intra-AS: single admin, so single consistent policy

= inter-AS: each admin wants control over how its
traffic routed and who routes through its AS

performance:
" intra-AS: can focus on performance
" inter-AS: policy may dominate over performance

Inter-AS tasks

" suppose router in AS1
receives datagram
destined outside of AS1:

* router should forward
packet to gateway
router, but which one?

other
networks

AS1 must:

learn which dests are
reachable through AS2,
which through AS3

propagate this
reachability info to all
routers in AS1

other
networks

Internet inter-AS routing: BGP

BGP (Border Gateway Protocol): the de facto
inter-domain routing protocol

* “glue that holds the Internet together”

BGP provides each AS a means to:

e eBGP: obtain subnet reachability information from
neighboring ASes

e iBGP: propagate reachability information to all AS-
internal routers.

* determine “good” routes to other networks based on
reachability information and policy

allows subnet to advertise its existence to rest of
Y77 V4
Internet: | am here

eBGP, iBGP connections

AS 2

AS 1 - — = eBGP connectivity AS 3
------ IBGP connectivity

gateway routers run both eBGP and iBGP protools

BGP basics

= BGP session: two BGP routers (“peers”) exchange BGP
messages over semi-permanent TCP connection:

* advertising paths to different destination network prefixes
(BGP is a “path vector” protocol)

= when AS3 gateway router 3a advertises path AS3,X to AS2
gateway router 2c:

e AS3 promises to AS2 it will forward datagrams towards X

. / : ¢
e N N e

______) ¥ BGP advertisement:
@' - AS3, X

Path attributes and BGP routes

= advertised prefix includes BGP attributes
o prefix + attributes = “route”

" two important attributes:

e AS-PATH: list of ASes through which prefix advertisement
has passed

e NEXT-HOP: indicates specific internal-AS router to next-
hop AS
" Policy-based routing:

e gateway receiving route advertisement uses import policy to
accept/decline path (e.g., never route through AS Y).

e AS policy also determines whether to advertise path to
other other neighboring ASes

BGP path advertisement

" AS2 router 2c receives path advertisement AS3,X (via eBGP) from AS3
router 3a

= Based on AS2 policy, AS2 router 2c accepts path AS3,X, propagates
(via iBGP) to all AS2 routers

= Based on AS2 policy, AS2 router 2a advertises (via eBGP) path AS2,
AS3,X to AS1 router 1c

BGP path advertisement

gateway router may learn about multiple paths to destination:

= AS] gateway router 1C learns path AS2,AS3,X from 2a
= ASI1 gateway router 1C learns path AS3,X from 3a

= Based on policy, AS1 gateway router 1C chooses path AS3,X, and
advertises path within AS1 via iBGP

BGP: achieving Eolicx via advertisements

legend: provider
network

\
I / customer
\ network:

Suppose an ISP only wants to route traffic to/from its customer
networks (does not want to carry transit traffic between other ISPs)

7
N

= A advertises path Aw to B and to C

= B chooses not to advertise BAw to C:

= B gets no “revenue” for routing CBAw, since none of C,A,wareB’s
customers

= C does not learn about CBAw path
= C will route CAw (not using B) to get to w

BGP: achieving Eolicx via advertisements

legend: provider
network

\
I / customer
\ network:

Suppose an ISP only wants to route traffic to/from its customer
networks (does not want to carry transit traffic between other ISPs)

7
N

= A,B,C are provider networks
= X,\W,)Y are customer (of provider networks)
= X is dual-homed: attached to two networks

" policy to enforce: X does not want to route from B to C via X
= ..so X will not advertise to B a route to C

BGP route selection

" router may learn about more than one route to
destination AS, selects route based on:

|. local preference value attribute (policy decision)
2. shortest AS-PATH

3. closest NEXT-HOP router (hot potato routing)
4. additional criteria

Hot Potato Routing

3d—OC4

OSPF link weights

= 2d learns (via iBGP) it can route to X via 2a or 2c

" hot potato routing: choose local gateway that has least intra-
domain cost (e.g., 2d chooses 2a, even though more AS hops
to X): don’t worry about inter-domain cost!

	TCP
	Improving Support for Learning
	Goals
	TCP: Overview RFCs: 793,1122,1323, 2018, 2581
	TCP segment structure
	Connection Management
	TCP 3-way handshake
	TCP sender events:
	TCP seq. numbers, ACKs
	TCP seq. numbers, ACKs
	TCP: retransmission scenarios
	TCP: retransmission scenarios
	TCP ACK generation [RFC 1122, RFC 2581]
	TCP fast retransmit
	TCP fast retransmit
	TCP round trip time, timeout
	TCP round trip time, timeout
	TCP round trip time, timeout
	TCP flow control
	TCP flow control
	TCP: closing a connection
	TCP: closing a connection
	Inter-AS routing is different
	Inter-AS tasks
	Internet inter-AS routing: BGP
	eBGP, iBGP connections
	BGP basics
	Path attributes and BGP routes
	BGP path advertisement
	BGP path advertisement
	BGP: achieving policy via advertisements
	BGP: achieving policy via advertisements
	BGP route selection
	Hot Potato Routing

