
TCP

Session 22
INST 346

Technologies, Infrastructure and Architecture

Improving Support for Learning

• Less lecture, more discussion, slow down
• More examples and lab-style homework
• In-class activities
• Discuss homework and quizzes in class
• Solicit topics in advance for exam review
• More readings (!)
• Jump around less on the slides
• More extensive exam study guide
• More quiz questions (!)

Goals

• TCP
– Connection Setup
– Reliable Transfer
– Timeout Setting
– Flow Control
– Disconnection

• Maybe: BGP

TCP: Overview RFCs: 793,1122,1323, 2018, 2581

 full duplex data:
• bi-directional data flow

in same connection
• MSS: maximum segment

size
 connection-oriented:

• handshaking (exchange
of control msgs) inits
sender, receiver state
before data exchange

 flow controlled:
• sender will not

overwhelm receiver

 point-to-point:
• one sender, one receiver

 reliable, in-order byte
steam:

• no “message
boundaries”

 pipelined:
• TCP congestion and

flow control set window
size

TCP segment structure

source port # dest port #

32 bits

application
data

(variable length)

sequence number
acknowledgement number

receive window

Urg data pointerchecksum
FSRAhead

len

options (variable length)

ACK: ACK #
valid

RST, SYN, FIN:
connection estab
(setup, teardown

commands)

bytes
rcvr willing
to accept

counting
by bytes
of data

Internet
checksum

(as in UDP)

Connection Management
before exchanging data, sender/receiver “handshake”:
 agree to establish connection (each knowing the other willing

to establish connection)
 agree on connection parameters

connection state: ESTAB
connection variables:

seq # client-to-server
server-to-client

rcvBuffer size
at server,client

application

network

connection state: ESTAB
connection Variables:

seq # client-to-server
server-to-client

rcvBuffer size
at server,client

application

network

Socket clientSocket =
newSocket("hostname","port
number");

Socket connectionSocket =
welcomeSocket.accept();

TCP 3-way handshake

SYNbit=1, Seq=x

choose init seq num, x
send TCP SYN msg

ESTAB

SYNbit=1, Seq=y
ACKbit=1; ACKnum=x+1

choose init seq num, y
send TCP SYNACK
msg, acking SYN

ACKbit=1, ACKnum=y+1

received SYNACK(x)
indicates server is live;
send ACK for SYNACK;

this segment may contain
client-to-server data received ACK(y)

indicates client is live

SYNSENT

ESTAB

SYN RCVD

client state
LISTEN

server state
LISTEN

TCP sender events:
data rcvd from app:
 create segment with

seq #
 seq # is byte-stream

number of first data
byte in segment
 start timer if not

already running
• think of timer as for

oldest unacked
segment

• expiration interval:
TimeOutInterval

timeout:
 retransmit segment

that caused timeout
 restart timer
ack rcvd:
 if ack acknowledges

previously unacked
segments

• update what is known
to be ACKed

• start timer if there are
still unacked segments

TCP seq. numbers, ACKs
sequence numbers:

• byte stream “number” of
first byte in segment’s
data

acknowledgements:
• seq # of next byte
expected from other side

• cumulative ACK
Q: how receiver handles
out-of-order segments
• A: TCP spec doesn’t say,
- up to implementor source port # dest port #

sequence number
acknowledgement number

checksum

rwnd
urg pointer

incoming segment to sender

A

sent
ACKed

sent, not-
yet ACKed
(“in-
flight”)

usable
but not
yet sent

not
usable

window size
N

sender sequence number space

source port # dest port #

sequence number
acknowledgement number

checksum

rwnd
urg pointer

outgoing segment from sender

TCP seq. numbers, ACKs

User
types

‘C’

host ACKs
receipt

of echoed
‘C’

host ACKs
receipt of
‘C’, echoes
back ‘C’

simple telnet scenario

Host BHost A

Seq=42, ACK=79, data = ‘C’

Seq=79, ACK=43, data = ‘C’

Seq=43, ACK=80

TCP: retransmission scenarios

lost ACK scenario

Host BHost A

Seq=92, 8 bytes of data

ACK=100

Seq=92, 8 bytes of data

Xtim
eo

ut

ACK=100

premature timeout

Host BHost A

Seq=92, 8 bytes of data

ACK=100

Seq=92, 8
bytes of data

tim
eo

ut

ACK=120

Seq=100, 20 bytes of data

ACK=120

SendBase=100

SendBase=120

SendBase=120

SendBase=92

TCP: retransmission scenarios

X

cumulative ACK

Host BHost A

Seq=92, 8 bytes of data

ACK=100

Seq=120, 15 bytes of data

tim
eo

ut

Seq=100, 20 bytes of data

ACK=120

TCP ACK generation [RFC 1122, RFC 2581]

event at receiver

arrival of in-order segment with
expected seq #. All data up to
expected seq # already ACKed

arrival of in-order segment with
expected seq #. One other
segment has ACK pending

arrival of out-of-order segment
higher-than-expect seq. # .
Gap detected

arrival of segment that
partially or completely fills gap

TCP receiver action

delayed ACK. Wait up to 500ms
for next segment. If no next segment,
send ACK

immediately send single cumulative
ACK, ACKing both in-order segments

immediately send duplicate ACK,
indicating seq. # of next expected byte

immediate send ACK, provided that
segment starts at lower end of gap

TCP fast retransmit

 time-out period often
relatively long:

• long delay before
resending lost packet

 detect lost segments
via duplicate ACKs.

• sender often sends
many segments back-
to-back

• if segment is lost, there
will likely be many
duplicate ACKs.

if sender receives 3
ACKs for same data
(“triple duplicate ACKs”),
resend unacked
segment with smallest
seq #
 likely that unacked

segment lost, so don’t
wait for timeout

TCP fast retransmit

(“triple duplicate ACKs”),

X

fast retransmit after sender
receipt of triple duplicate ACK

Host BHost A

Seq=92, 8 bytes of data

ACK=100

tim
eo

ut ACK=100

ACK=100
ACK=100

TCP fast retransmit

Seq=100, 20 bytes of data

Seq=100, 20 bytes of data

TCP round trip time, timeout

Q: how to set TCP
timeout value?
 longer than RTT

• but RTT varies
 too short: premature

timeout, unnecessary
retransmissions
 too long: slow reaction

to segment loss

Q: how to estimate RTT?
 SampleRTT: measured

time from segment
transmission until ACK
receipt

• ignore retransmissions
 SampleRTT will vary, want

estimated RTT “smoother”
• average several recent

measurements, not just
current SampleRTT

RTT: gaia.cs.umass.edu to fantasia.eurecom.fr

100

150

200

250

300

350

1 8 15 22 29 36 43 50 57 64 71 78 85 92 99 106
time (seconnds)

RT
T

(m
ill

ise
co

nd
s)

SampleRTT Estimated RTT

EstimatedRTT = (1- α)*EstimatedRTT + α*SampleRTT

 exponential weighted moving average
 influence of past sample decreases exponentially fast
 typical value: α = 0.125

TCP round trip time, timeout

RT
T

(m
illi

se
co

nd
s)

RTT: gaia.cs.umass.edu to fantasia.eurecom.fr

sampleRTT
EstimatedRTT

time (seconds)

 timeout interval: EstimatedRTT plus “safety margin”
• large variation in EstimatedRTT -> larger safety margin

 estimate SampleRTT deviation from EstimatedRTT:
DevRTT = (1-β)*DevRTT +

β*|SampleRTT-EstimatedRTT|

TCP round trip time, timeout

(typically, β = 0.25)

TimeoutInterval = EstimatedRTT + 4*DevRTT

estimated RTT “safety margin”

* Check out the online interactive exercises for more
examples: http://gaia.cs.umass.edu/kurose_ross/interactive/

TCP flow control
application

process

TCP socket
receiver buffers

TCP
code

IP
code

application
OS

receiver protocol stack

application may
remove data from

TCP socket buffers ….

… slower than TCP
receiver is delivering
(sender is sending)

from sender

receiver controls sender, so
sender won’t overflow
receiver’s buffer by transmitting
too much, too fast

flow control

TCP flow control

buffered data

free buffer spacerwnd

RcvBuffer

TCP segment payloads

to application process
 receiver “advertises” free

buffer space by including
rwnd value in TCP header
of receiver-to-sender
segments

• RcvBuffer size set via
socket options (typical default
is 4096 bytes)

• many operating systems
autoadjust RcvBuffer

 sender limits amount of
unacked (“in-flight”) data to
receiver’s rwnd value

 guarantees receive buffer
will not overflow

receiver-side buffering

TCP: closing a connection

 client, server each close their side of connection
• send TCP segment with FIN bit = 1

 respond to received FIN with ACK
• on receiving FIN, ACK can be combined with own FIN

 simultaneous FIN exchanges can be handled

FIN_WAIT_2

CLOSE_WAIT

FINbit=1, seq=y

ACKbit=1; ACKnum=y+1

ACKbit=1; ACKnum=x+1
wait for server

close

can still
send data

can no longer
send data

LAST_ACK

CLOSED

TIMED_WAIT

timed wait
for 2*max

segment lifetime

CLOSED

TCP: closing a connection

FIN_WAIT_1 FINbit=1, seq=xcan no longer
send but can
receive data

clientSocket.close()

client state server state
ESTABESTAB

Inter-AS routing is different

policy:
 intra-AS: single admin, so single consistent policy
 inter-AS: each admin wants control over how its

traffic routed and who routes through its AS

performance:
 intra-AS: can focus on performance
 inter-AS: policy may dominate over performance

Inter-AS tasks
 suppose router in AS1

receives datagram
destined outside of AS1:
• router should forward

packet to gateway
router, but which one?

AS1 must:
1. learn which dests are

reachable through AS2,
which through AS3

2. propagate this
reachability info to all
routers in AS1

AS3

AS2

3b

3c
3a

AS1

1c
1a

1d
1b

2a
2c

2b
other
networks

other
networks

Internet inter-AS routing: BGP

 BGP (Border Gateway Protocol): the de facto
inter-domain routing protocol
• “glue that holds the Internet together”

 BGP provides each AS a means to:
• eBGP: obtain subnet reachability information from

neighboring ASes
• iBGP: propagate reachability information to all AS-

internal routers.
• determine “good” routes to other networks based on

reachability information and policy
 allows subnet to advertise its existence to rest of

Internet: “I am here”

eBGP, iBGP connections

eBGP connectivity
iBGP connectivity

1b

1d

1c1a

2b

2d

2c2a
3b

3d

3c3a

AS 2

AS 3AS 1

1c

∂

∂

gateway routers run both eBGP and iBGP protools

BGP basics

 when AS3 gateway router 3a advertises path AS3,X to AS2
gateway router 2c:

• AS3 promises to AS2 it will forward datagrams towards X

 BGP session: two BGP routers (“peers”) exchange BGP
messages over semi-permanent TCP connection:

• advertising paths to different destination network prefixes
(BGP is a “path vector” protocol)

1b

1d

1c1a
2b

2d

2c2a

3b

3d

3c3a

AS 2

AS 3
AS 1

X
BGP advertisement:
AS3, X

Path attributes and BGP routes
 advertised prefix includes BGP attributes

• prefix + attributes = “route”

 two important attributes:
• AS-PATH: list of ASes through which prefix advertisement

has passed
• NEXT-HOP: indicates specific internal-AS router to next-

hop AS
 Policy-based routing:

• gateway receiving route advertisement uses import policy to
accept/decline path (e.g., never route through AS Y).

• AS policy also determines whether to advertise path to
other other neighboring ASes

BGP path advertisement

 Based on AS2 policy, AS2 router 2c accepts path AS3,X, propagates
(via iBGP) to all AS2 routers

1b

1d

1c1a
2b

2d

2c2a

3b

3d

3c3a

AS2

AS3
AS1

X
AS3,X

AS2,AS3,X

 AS2 router 2c receives path advertisement AS3,X (via eBGP) from AS3
router 3a

 Based on AS2 policy, AS2 router 2a advertises (via eBGP) path AS2,
AS3, X to AS1 router 1c

BGP path advertisement

 AS1 gateway router 1c learns path AS2,AS3,X from 2a

1b

1d

1c1a
2b

2d

2c2a

3b

3d

3c3a

AS2

AS3
AS1

X
AS3,X

AS2,AS3,X

gateway router may learn about multiple paths to destination:

 AS1 gateway router 1c learns path AS3,X from 3a

 Based on policy, AS1 gateway router 1c chooses path AS3,X, and
advertises path within AS1 via iBGP

 A advertises path Aw to B and to C
 B chooses not to advertise BAw to C:

 B gets no “revenue” for routing CBAw, since none of C, A, w are B’s
customers

 C does not learn about CBAw path
 C will route CAw (not using B) to get to w

A

B

C

W
X

Y

legend:

customer
network:

provider
network

Suppose an ISP only wants to route traffic to/from its customer
networks (does not want to carry transit traffic between other ISPs)

BGP: achieving policy via advertisements

BGP: achieving policy via advertisements

 A,B,C are provider networks
 X,W,Y are customer (of provider networks)
 X is dual-homed: attached to two networks
 policy to enforce: X does not want to route from B to C via X

 .. so X will not advertise to B a route to C

A

B

C

W
X

Y

legend:

customer
network:

provider
network

Suppose an ISP only wants to route traffic to/from its customer
networks (does not want to carry transit traffic between other ISPs)

BGP route selection
 router may learn about more than one route to

destination AS, selects route based on:
1. local preference value attribute (policy decision)
2. shortest AS-PATH
3. closest NEXT-HOP router (hot potato routing)
4. additional criteria

Hot Potato Routing

 2d learns (via iBGP) it can route to X via 2a or 2c
 hot potato routing: choose local gateway that has least intra-

domain cost (e.g., 2d chooses 2a, even though more AS hops
to X): don’t worry about inter-domain cost!

1b

1d

1c1a
2b

2d

2c2a

3b

3d

3c3a

AS2

AS3
AS1

X
AS3,X

AS1,AS3,X

OSPF link weights
201

152
112

263

	TCP
	Improving Support for Learning
	Goals
	TCP: Overview RFCs: 793,1122,1323, 2018, 2581
	TCP segment structure
	Connection Management
	TCP 3-way handshake
	TCP sender events:
	TCP seq. numbers, ACKs
	TCP seq. numbers, ACKs
	TCP: retransmission scenarios
	TCP: retransmission scenarios
	TCP ACK generation [RFC 1122, RFC 2581]
	TCP fast retransmit
	TCP fast retransmit
	TCP round trip time, timeout
	TCP round trip time, timeout
	TCP round trip time, timeout
	TCP flow control
	TCP flow control
	TCP: closing a connection
	TCP: closing a connection
	Inter-AS routing is different
	Inter-AS tasks
	Internet inter-AS routing: BGP
	eBGP, iBGP connections
	BGP basics
	Path attributes and BGP routes
	BGP path advertisement
	BGP path advertisement
	BGP: achieving policy via advertisements
	BGP: achieving policy via advertisements
	BGP route selection
	Hot Potato Routing

