

College of Information Studies

University of Maryland Hornbake Library Building College Park, MD 20742-4345

Ethernet

Session 16 INST 346

Goals for Today

- Finishing up error correction
- Ethernet
- Switched Ethernet
- H5

"Submarine" Fiber Optic Cables

Parity checking

single bit parity:

 detect single bit errors

two-dimensional bit parity:

detect and correct single bit errors

* Check out the online interactive exercises for more examples: http://gaia.cs.umass.edu/kurose_ross/interactive/

Cyclic redundancy check

- more powerful error-detection coding
- view data bits, D, as a binary number
- choose r+l bit pattern (generator), G
- goal: choose r CRC bits, R, such that
 - <D,R> exactly divisible by G (modulo 2)
 - receiver knows G, divides <D,R> by G. If non-zero remainder: error detected!
 - can detect all burst errors less than r+1 bits
- widely used in practice (Ethernet, 802.11 WiFi)

$$\longleftarrow d \text{ bits } \longrightarrow \frown r \text{ bits } \longrightarrow bit$$

$$D: \text{ data bits to be sent } R: CRC \text{ bits } pattern$$

Ethernet

"dominant" wired LAN technology:

- single chip, multiple speeds (e.g., Broadcom BCM5761)
- first widely used LAN technology
- simpler, cheap
- kept up with speed race: 10 Mbps 10 Gbps

Metcalfe's Ethernet sketch

Ethernet: unreliable, connectionless

- connectionless: no handshaking between sending and receiving NICs
- unreliable: receiving NIC doesn't send acks or nacks to sending NIC
 - data in dropped frames recovered only if initial sender uses higher layer rdt (e.g., TCP), otherwise dropped data lost
- Ethernet's MAC protocol: unslotted CSMA/CD with binary backoff

CSMA (carrier sense multiple access)

CSMA: listen before transmit: if channel sensed idle: transmit entire frame

• if channel sensed busy, defer transmission

• human analogy: don't interrupt others!

CSMA collisions spatial layout of nodes

- collisions can still occur: propagation delay means two nodes may not hear each other's transmission
- collision: entire packet transmission time wasted
 - distance & propagation delay play role in in determining collision probability

time

CSMA/CD (collision detection)

CSMA/CD: carrier sensing, deferral as in CSMA

- collisions detected within short time
- colliding transmissions aborted, reducing channel wastage
- collision detection:
 - easy in wired LANs: measure signal strengths, compare transmitted, received signals
 - difficult in wireless LANs: received signal strength overwhelmed by local transmission strength
- human analogy: the polite conversationalist

CSMA/CD (collision detection)

MAC addresses and ARP

- 32-bit IP address:
 - network-layer address for interface
 - used for layer 3 (network layer) forwarding
- MAC (or LAN or physical or Ethernet) address:
 - function: used 'locally" to get frame from one interface to another physically-connected interface (same network, in IP-addressing sense)
 - 48 bit MAC address (for most LANs) burned in NIC ROM, also sometimes software settable
 - e.g.: IA-2F-BB-76-09-AD ____ hexadecimal (base 16) notation (each "numeral" represents 4 bits)

LAN addresses and ARP

each adapter on LAN has unique LAN address

LAN addresses (more)

- MAC address allocation administered by IEEE
- manufacturer buys portion of MAC address space (to assure uniqueness)
- analogy:
 - MAC address: like Social Security Number
 - IP address: like postal address
- MAC flat address \rightarrow portability
 - can move LAN card from one LAN to another
- IP hierarchical address not portable
 - address depends on IP subnet to which node is attached

ARP protocol: same LAN

- A wants to send datagram to B
 - B' s MAC address not in A' s ARP table.
- A broadcasts ARP query packet, containing B's IP address
 - destination MAC address = FF-FF-FF-FF-FF
 - all nodes on LAN receive ARP query
- B receives ARP packet, replies to A with its (B's) MAC address
 - frame sent to A' s MAC address (unicast)

- A caches (saves) IP-to-MAC address pair in its ARP table until information becomes old (times out)
 - soft state: information that times out (goes away) unless refreshed
- ARP is "plug-and-play":
 - nodes create their ARP tables without intervention from net administrator

Ethernet frame structure

sending adapter encapsulates IP datagram (or other network layer protocol packet) in Ethernet frame type preamble dest. address Source (payload) CRC

preamble:

- 7 bytes with pattern 10101010 followed by one byte with pattern 10101011
- used to synchronize receiver, sender clock rates

Ethernet frame structure (more)

- *addresses:* 6 byte source, destination MAC addresses
 - if adapter receives frame with matching destination address, or with broadcast address (e.g. ARP packet), it passes data in frame to network layer protocol
 - otherwise, adapter discards frame
- type: indicates higher layer protocol (mostly IP but others possible, e.g., Novell IPX, AppleTalk)
- CRC: cyclic redundancy check at receiver
 - error detected: frame is dropped

802.3 Ethernet standards: link & physical layers

- *many* different Ethernet standards
 - common MAC protocol and frame format
 - different speeds: 2 Mbps, 10 Mbps, 100 Mbps, IGbps, 10 Gbps, 40 Gbps
 - different physical layer media: fiber, cable

Ethernet: physical topology

- bus: popular through mid 90s
 all nodes in same collision domain (can collide with each other)
- star: prevails today
 active switch in center

 - each "spoke" runs a (separate) Ethernet protocol (nodes do not collide with each other)

Ethernet switch

- link-layer device: takes an *active* role
 - store, forward Ethernet frames
 - examine incoming frame's MAC address,
 selectively forward frame to one-or-more outgoing links when frame is to be forwarded on segment, uses CSMA/CD to access segment
- transparent
 - hosts are unaware of presence of switches
- plug-and-play, self-learning
 - switches do not need to be configured

Switch: *multiple* simultaneous transmissions

- hosts have dedicated, direct connection to switch
- switches buffer packets
- Ethernet protocol used on each incoming link, but no collisions; full duplex
 - each link is its own collision domain
- switching: A-to-A' and B-to-B' can transmit simultaneously, without collisions

switch with six interfaces (1,2,3,4,5,6)

Switch forwarding table

- Q: how does switch know A' reachable via interface 4, B' reachable via interface 5?
- <u>A</u>: each switch has a switch table, each entry:
 - (MAC address of host, interface to reach host, time stamp)
 - Iooks like a routing table!

Q: how are entries created, maintained in switch table?

something like a routing protocol?

switch with six interfaces (1,2,3,4,5,6)

5

Α

3

C'

В

Switch: self-learning

Source: A Dest: A'

B

А

5

A'

- switch *learns* which hosts can be reached through which interfaces
 - when frame received, switch "learns"
 location of sender: incoming LAN segment
 - -records sender/location pair in switch table MAC ad

MAC addr	interface	TTL
A	1	60

C'

Switch table (initially empty)

3

Self-learning, forwarding: example / Source: A

- frame destination, A', location unknow flood
- destination A location known: selectively send on just one link

MAC addr in	terface	TTL
A	1	60
A'	4	60

switch table (initially empty)

Interconnecting switches

self-learning switches can be connected together:

<u>Q</u>: sending from A to G - how does S_1 know to forward frame destined to G via S_4 and S_3 ?

A: self learning! (works exactly the same as in single-switch case!)

Self-learning multi-switch example

Suppose C sends frame to I, I responds to C

• Q: show switch tables and packet forwarding in S_1 , S_2 , S_3 , S_4

H5

Before You Go

On a sheet of paper, answer the following (ungraded) question (no names, please):

What one thing could the instructor change to improve your learning?