

College of Information Studies

University of Maryland Hornbake Library Building College Park, MD 20742-4345

Access Control

Session 10 INST 346

Agenda

• Hashing

• Access Control

• Usable Security

- **goal:** fixed-length, easyto-compute digital "fingerprint"
- apply hash function H to m, get fixed size message digest, H(m).

Hash function properties:

- many-to-l
- produces fixed-size msg digest (fingerprint)
- given message digest x, computationally infeasible to find m such that x = H(m)

TCP checksum: poor crypto hash function

Internet checksum has some properties of hash function:

- produces fixed length digest (16-bit sum) of message
- is many-to-one

But given message with given hash value, it is easy to find another message with same hash value:

<u>message</u>	ASCII format	<u>message</u>	ASCII format
I O U 1	49 4F 55 31	I O U <u>9</u>	49 4F 55 <u>39</u>
00.9	30 30 2E 39	0 0 . <u>1</u>	30 30 2E <u>31</u>
9 B O B	39 42 D2 42	9 B O B	39 42 D2 42
	B2 C1 D2 AC -	 different messages 	B2 C1 D2 AC
		but identical checksums!	

Widely used hash functions

- MD5 (RFC 1321) has known vulnerabilities
 - computes 128-bit message digest in 4-step process
- SHA-I is widely used but is deprecated
 - US standard [NIST, FIPS PUB 180-1]
 - 160-bit message digest
 - Collision attack with 1000 GPUs in a month
- SHA-2 and SHA-3 are now available
 - Also standardized by NIST
 - More secure, but slower (in software)

Authentication

First, say who you are
Userid, ID card, Nametag, ...

Second, check to see if that's who you are

False positive: decide its you, when its not
False negative: decide its not you, when it is

Three-Factor Authentication

• What you know

• What you have

• What you are

Passwords

• Hard to guess

– Not a word, date, userid, ...

- Common approach: multiple types of characters
- Easy to remember
- Easy to set and reset
 - "Cognitive passwords"
- Rotated periodically
- Different on every system
- Not written or stored anywhere

Something You Have

- Phone (phone call, SMS)
- Email address
- Machine-readable ID card
- Authentication app
- One-time pad

Something About You

- Signature
- Fingerprint
- Face
- Voice
- Eye (iris, pupil)
- Typing (inter-keystroke timing)

Usable Security

Usability and security are in tension
The most secure system allows nobody to use it!

- Goal: find the best balance
 - Required security based on anticipated threat
 - Required usability based on user abilities
 - Optimal tradeoffs within that design space

Getahead: Malware

Before You Go!

• On a sheet of paper (no names), answer the following question:

What was the muddlest point in today's class?