

College of Information Studies

University of Maryland Hornbake Library Building College Park, MD 20742-4345

Computers

Session 1 INST 346

Agenda

- The Computer
- The Course

A COMPUTER WANTED.

WASHINGTON, May 1.—A civil service examination will be held May 18 in Washington, and, 1f necessary, in other eities, to secure eligibles for the position of computer in the Nautical Almanac Office, where two vacancies exist—one at \$1,000, the other at \$1,400.

The examination will include the subjects of algebra, geometry, trigonometry, and astronomy. Application blanks may be obtained of the United States Civil Service Commission.

Ehe New York Eimes

Published: May 2, 1892 Copyright © The New York Times

Source: Wikipedia

The Big Picture

Hardware Processing Cycle

- Input comes from somewhere
 Keyboard, mouse, microphone, camera, …
- The system does something with it
 Processor, memory, software, network, ...
- Output goes somewhere

– Monitor, speaker, robot controls, ...

What's that?

Frequency

Unit	Abbreviation	Cycles per second
hertz	Hz	1
kilohertz	KHz	$10^3 = 1,000$
megahertz	MHz	$10^6 = 1,000,000$
gigahertz	GHz	$10^9 = 1,000,000,000$

Time

Unit	Abbreviation	Duration (seconds)
second	sec/s	1
millisecond	ms	$10^{-3} = 1/1,000$
microsecond	μs	$10^{-6} = 1/1,000,000$
nanosecond	ns	$10^{-9} = 1/1,000,000,000$
picosecond	ps	$10^{-12} = 1/1,000,000,000,000$
femtosecond	fs	$10^{-15} = 1/1,000,000,000,000,000$

Moore's Law – The number of transistors on integrated circuit chips (1971-2016)

Moore's law describes the empirical regularity that the number of transistors on integrated circuits doubles approximately every two years. This advancement is important as other aspects of technological progress – such as processing speed or the price of electronic products – are strongly linked to Moore's law.

Data source: Wikipedia (https://en.wikipedia.org/wiki/Transistor_count) The data visualization is available at OurWorldinData.org. There you find more visualizations and research on this topic.

More cores!

System Architecture

Motherboard

Units of Size

Unit	Abbreviation	Size (bytes)	
bit	b	1/8	
byte	В	1	
kilobyte	KB	$2^{10} = 1024$	
megabyte	MB	$2^{20} = 1,048,576$	
gigabyte	GB	$2^{30} = 1,073,741,824$	
terabyte	ТВ	2 ⁴⁰ = 1,099,511,627,776	
petabyte	PB	$2^{50} = 1,125,899,906,842,624$	

Moore's Law

Processing speed doubles every 18 months
– Faster CPU, longer words, larger cache, more cores

Cost/bit for RAM drops 50% every 12 months
 Less need for "virtual memory"

Extracted From Shelly Cashman Vermatt's Discovering Computers 2004

Input Devices

- Text
 - Keyboard, optical character recognition
 - Speech recognition, handwriting recognition
- Direct manipulation
 - 2-D: mouse, trackball, touchpad, touchscreen
 - 3-D: wand, data glove
- Remote sensing
 - Camera, speaker ID, head tracker, eye tracker

Binary Data Representation

Example: American Standard Code for Information Interchange (ASCII)

01000001	= A	01100001	= a
01000010	= B	01100010	= b
01000011	= C	01100011	= C
01000100	= D	01100100	= d
01000101	= E	01100101	= e
01000110	= F	01100110	= f
01000111	= G	01100111	= g
01001000	= H	01101000	= h
01001001	=	01101001	= i
01001010	= J	01101010	= j
01001011	= K	01101011	= k
01001100	= L	01101100	=
01001101	= M	01101101	= m
01001110	= N	01101110	= n
01001111	= O	01101111	= 0
01010000	= P	01110000	= p
01010001	= Q	01110001	= q
	•		-

Output Devices

- Visual
 - Screen, projector, head-mounted display, CAVE
- Acoustic
 - Speakers, headphones
- Physical
 - Tactile (vibrotactile, pneumatic, piezoelectric)
 - Force feedback (pen, joystick, exoskeleton)
 - Thermal
- Vestibular (motion-based simulators)
- Locomotive (treadmill, stationary bicycle)
- Olfactory

Agenda

- The Computer
- ≻The Course

A Personal Approach to Learning

- Work ahead, so that you are <u>never</u> behind
- Find new questions everywhere
 Then find the answers somewhere
- Enrich your practical skills relentlessly
- Pick topics you want to learn more about

The Fine Print

- Group work is encouraged on homework
 But you must personally write what you turn in
- Deadlines are firm and sharp
 - Allowances for individual circumstances are included in the grading computation
- Academic integrity is a serious matter
 - No group work during the exam!
 - Scrupulously respect time limits

Before You Go

On a sheet of paper, answer the following (ungraded) question (no names, please):

What was the muddlest point in today's class?