

College of Information Studies

University of Maryland Hornbake Library Building College Park, MD 20742-4345

Domain Names

Session 6 INST 346 Technologies, Infrastructure and Architecture

Quiz

- Start: 5:00 sharp
- End: 5:05 sharp (pencil down or zero credit)
- Include your name!
- No communication with anyone till 5:05
 - No email, no talking, no SMS, no chat, ...
 - Even if you finish early!
- Open book, open notes, open Web, open mind

Muddiest Points

- Socket programming
 How much programming is in this class?
- Difference between POP3 and IMAP

• Blocking on socket input

Goals for Today

• Demo socket programming

• Domain Name System

• Preview H2

Socket Programming Demo

DNS: domain name system

people: many identifiers:

– SSN, name, passport #

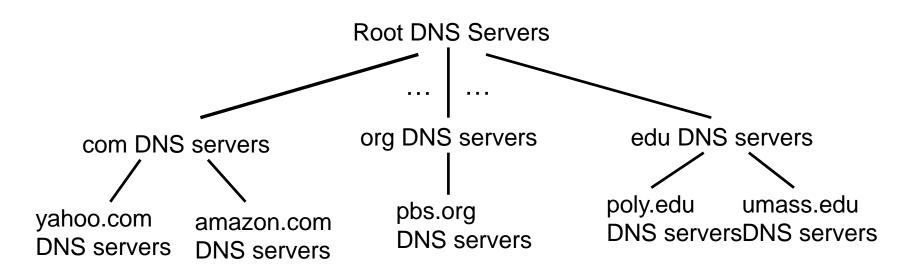
Internet hosts, routers:

- IP address (32 bit) used for addressing
 datagrams
- "name", e.g.,
 www.yahoo.com used by humans
- <u>Q:</u> how to map between IP address and name, and vice versa ?

Domain Name System:

- distributed database implemented in hierarchy of many name servers
- *application-layer protocol:* hosts, name servers communicate to *resolve* names (address/name translation)
 - note: core Internet function, implemented as applicationlayer protocol
 - complexity at network's "edge"

Designing DNS

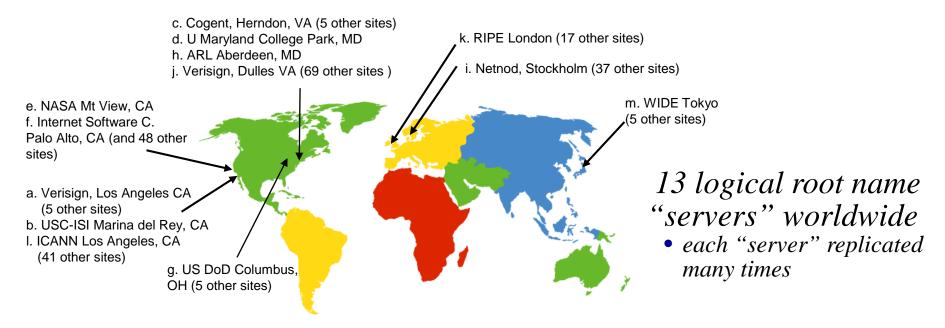

Centralized design – problems :

- 1. Single point of failure
- 2. Traffic volume
- 3. Distant centralized database
- 4. Maintenance

DNS

A distributed database Implemented on a hierarchy of DNS servers An application-layer protocol that allows hosts to query the distributed database. Runs over UDP, Port 53 Employed by other app level protocols

DNS: a distributed, hierarchical database



client wants IP for www.amazon.com; 1st approximation:

- client queries root server to find com DNS server
- client queries .com DNS server to get amazon.com DNS server
- client queries amazon.com DNS server to get IP address for www.amazon.com

DNS: root name servers

- contacted by local name server that can not resolve name
- root name server:
 - contacts authoritative name server if name mapping not known
 - gets mapping
 - returns mapping to local name server

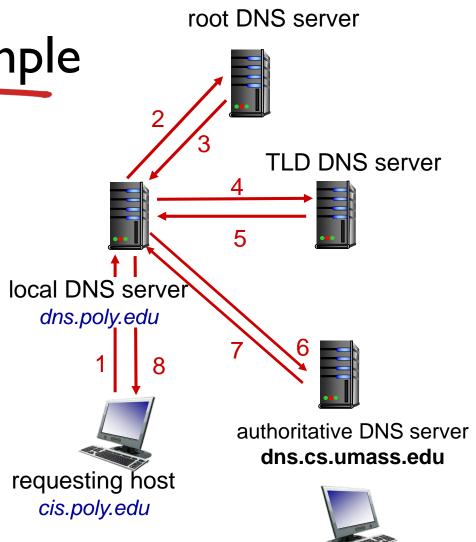
13 Root Name Servers

List of Root Servers

HOSTNAME	IP ADDRESSES	MANAGER
a.root-servers.net	198.41.0.4, 2001:503:ba3e::2:30	VeriSign, Inc.
b.root-servers.net	192.228.79.201, 2001:500:200::b	University of Southern California (ISI)
c.root-servers.net	192.33.4.12, 2001:500:2::c	Cogent Communications
d <u>.root-servers.net</u>	199.7.91.13, 2001:500:2d::d	University of Maryland
e.root-servers.net	192.203.230.10, 2001:500:a8::e	NASA (Ames Research Center)
f.root-servers.net	192.5.5.241, 2001:500:2f::f	Internet Systems Consortium, Inc.
g.root-servers.net	192.112.36.4, 2001:500:12::d0d	US Department of Defense (NIC)
h.root-servers.net	198.97.190.53, 2001:500:1::53	US Army (Research Lab)
i.root-servers.net	192.36.148.17, 2001:7fe::53	Netnod
j.root-servers.net	192.58.128.30, 2001:503:c27::2:30	VeriSign, Inc.
k.root-servers.net	193.0.14.129, 2001:7fd::1	RIPE NCC
l.root-servers.net	199.7.83.42, 2001:500:9f::42	ICANN
m.root-servers.net	202.12.27.33, 2001:dc3::35	WIDE Project

Source: https://www.iana.org/domains/root/servers

Local DNS name server

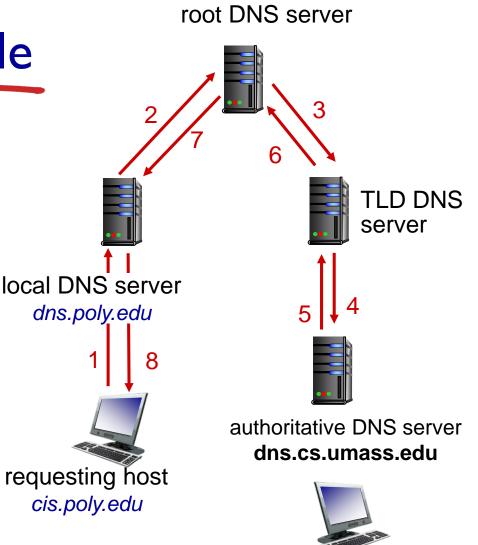

- does not strictly belong to hierarchy
- each ISP (residential ISP, company, university) has one
 - also called "default name server"
- when host makes DNS query, query is sent to its local DNS server
 - has local cache of recent name-to-address translation pairs (but may be out of date!)
 - acts as proxy, forwards query into hierarchy

DNS name resolution example

 host at cis.poly.edu wants IP address for gaia.cs.umass.edu

iterated query:

- contacted server replies with name of server to contact
- "I don't know this name, but ask this server"



gaia.cs.umass.edu

DNS name resolution example

recursive query:

- puts burden of name resolution on contacted name server
- heavy load at upper levels of hierarchy?

gaia.cs.umass.edu

DNS: caching, updating records

- once (any) name server learns mapping, it caches mapping
 - cache entries timeout (disappear) after some time (TTL)
 - TLD servers typically cached in local name servers
 - thus root name servers not often visited
- cached entries may be *out-of-date* (best effort name-to-address translation!)
 - if name host changes IP address, may not be known Internet-wide until all TTLs expire

DNS records

DNS: distributed database storing resource records (RR)

RR format: (name, value, type, ttl)

- name is hostname
- value is IP address

type=NS

- name is domain (e.g., foo.com)
- value is hostname of authoritative name server for this domain

type=CNAME

- name is alias name for some "canonical" (the real) name
- www.ibm.com is really servereast.backup2.ibm.com
- value is canonical name
 type=MX
 - value is name of mailserver associated with name

DNS Aliasing

- Complicated canonical names, better hit rate
- Host name aliasing
- Mail server aliasing

Example:

1. All redirect to facebook.com ←

facebook.org; facebook.us; facebook.in

2. gmail.com→mail.google.com

Example DNS lookup

Try on your command line or terminal :

\$ nslookup www.umd.edu

DNS protocol, messages

query and reply - both same message format

← 2 bytes →	- ← 2 bytes	v Domain Name System (query)
identification	flags	<pre>Transaction ID: 0x58ad Flags: 0x0100 Standard query 0 = Response: Message is a query 000 0 = 0pcode: Standard query (0)</pre>
# questions	# answer RRs	
# authority RRs	# additional RRs	
questions (variable #questions)		<pre></pre>
answers (variable #RRs)		
authority (variable #RRs)		
additional info (variable #RRs)		

DNS Reply message

```
   Domain Name System (response)

 [Request In: 104]
 [Time: 0.004175000 seconds]
 Transaction ID: 0x811d
Flags: 0x8183 Standard query response, No such name
   1... .... = Response: Message is a response
   .000 0... ... = 0pcode: Standard query (0)
   ..... .0.. ..... = Authoritative: Server is not an authority for domain
   .... ..0. .... = Truncated: Message is not truncated
   .... = Recursion desired: Do query recursively
   .... 1... 1... = Recursion available: Server can do recursive queries
   .... ... .0.. .... = Z: reserved (0)
   .... ....0 .... = Non-authenticated data: Unacceptable
   Questions: 1
 Answer RRs: 0
 Authority RRs: 1
 Additional RRs: 0
Oueries
 b._dns-sd._udp.0.48.105.10.in-addr.arpa: type PTR, class IN

   Authoritative nameservers

 I0.in-addr.arpa: type SOA, class IN, mname blox.net.umd.edu
```

Inserting records into DNS

- example: new startup "Network Utopia"
- register name networkuptopia.com at DNS registrar (e.g., Network Solutions)
 - provide names, IP addresses of authoritative name server (primary and secondary)
 - registrar inserts two RRs into .com TLD server: (networkutopia.com, dns1.networkutopia.com, NS) (dns1.networkutopia.com, 212.212.212.1, A)
- create authoritative server type A record for www.networkuptopia.com; type MX record for networkutopia.com

DNS takeaways

- Translating domain names to IP addresses
- Distributed, hierarchical database design
- Root, TLD, authoritative, local DNS servers
- Resource Records (RR)
- Aliasing
- Caching, Updating, Inserting RRs
- DNS protocol and messages

H2 Preview

Before You Go

On a sheet of paper, answer the following (ungraded) question (no names, please):

Name one thing the instructor could do to improve her teaching