
Email

Session 5

INST 346

Technologies, Infrastructure and Architecture

Muddiest Points

• Format of the HTTP messages

– What GET, HEAD, POST actually do

• Who creates proxy servers?

• How to create a Web server

Goals for Today

• Finish Email

– Review SMTP

– POP3 and IMAP

• Learn socket programming

• Getahead: DNS (maybe!)

Email

Three major components:
 user agents (“mail reader”)

 mail servers

 simple mail transfer
protocol: SMTP

User Agent
 composing, editing, reading

email messages

 e.g., Outlook, Thunderbird,
iPhone mail client

 outgoing, incoming
messages stored on server

user mailbox

outgoing

message queue

mail

server

mail

server

mail

server

SMTP

SMTP

SMTP

user

agent

user

agent

user

agent

user

agent

user

agent

user

agent

Email: mail servers

mail servers:
 mailbox contains incoming

messages for user

 message queue of outgoing
(to be sent) mail messages

 SMTP protocol between
mail servers to send email
messages

• client: sending mail
server

• “server”: receiving mail
server

mail

server

mail

server

mail

server

SMTP

SMTP

SMTP

user

agent

user

agent

user

agent

user

agent

user

agent

user

agent

Email: SMTP [RFC 2821]

 uses TCP to reliably transfer email message from
client to server, port 25

 direct transfer: sending server to receiving
server

 three phases of transfer
• handshaking (greeting)

• transfer messages

• close

 command/response interaction (like HTTP)
• commands: ASCII text

• response: status code and phrase

 messages must be in 7-bit ASCII

user

agent

Scenario: Alice sends message to Bob

1) Alice uses UA to compose
message “to”
bob@someschool.edu

2) Alice’s UA sends message
to her mail server; message
placed in message queue

3) client side of SMTP opens
TCP connection with Bob’s
mail server

4) SMTP client sends Alice’s
message over the TCP
connection

5) Bob’s mail server places the
message in Bob’s mailbox

6) Bob invokes his user agent
to read message

mail

server

mail

server

1

2 3 4

5

6

Alice’s mail server Bob’s mail server

user

agent

Sample SMTP interaction

Mail server (client) at crepes.fr has mail to send

Client initiates connection to hamburger.edu port 25

S: 220 hamburger.edu

C: HELO crepes.fr

S: 250 Hello crepes.fr, pleased to meet you

C: MAIL FROM: <alice@crepes.fr>

S: 250 alice@crepes.fr... Sender ok

C: RCPT TO: <bob@hamburger.edu>

S: 250 bob@hamburger.edu ... Recipient ok

C: DATA

S: 354 Enter mail, end with "." on a line by itself

C: Do you like ketchup?

C: How about pickles?

C: .

S: 250 Message accepted for delivery

C: QUIT

S: 221 hamburger.edu closing connection

SMTP: final words

 SMTP uses persistent
connections

 SMTP requires message
(header & body) to be in
7-bit ASCII

 SMTP server uses
CRLF.CRLF to
determine end of message

comparison with HTTP:

 HTTP: pull

 SMTP: push

 both have ASCII
command/response
interaction, status codes

 HTTP: each object
encapsulated in its own
response message

 SMTP: multiple objects
sent in multipart message

Mail message format

SMTP: protocol for
exchanging email messages

RFC 822: standard for text
message format:

 header lines, e.g.,
• To:

• From:

• Subject:

different from SMTP MAIL
FROM, RCPT TO:
commands!

 Body: the “message”
• ASCII characters only

header

body

blank

line

Mail access protocols

 SMTP: delivery/storage to receiver’s mail server

 mail access protocol: upload to and download from a
mail server

• POP: Post Office Protocol [RFC 1939]: authorization,
download

• IMAP: Internet Mail Access Protocol [RFC 1730]: more
features, including manipulation of stored messages in
folders on the mail server

sender’s mail
server

SMTP SMTP
mail access

protocol

receiver’s mail
server

(e.g., POP,
IMAP)

user

agent

user

agent

POP3 protocol

authorization phase
 client commands:

• user: declare username

• pass: password

 server responses

• +OK

• -ERR

transaction phase, client:
 list: list message numbers

 retr: retrieve message by
number

 dele: delete

 quit

C: list

S: 1 498

S: 2 912

S: .

C: retr 1

S: <message 1 contents>

S: .

C: dele 1

C: retr 2

S: <message 1 contents>

S: .

C: dele 2

C: quit

S: +OK POP3 server signing off

S: +OK POP3 server ready

C: user bob ussrid

S: +OK

C: pass hungry password

S: +OK user successfully logged on

Comparing POP3 and IMAP

more about POP3
 previous example uses

POP3 “download and
delete” mode

• Bob cannot re-read e-
mail if he changes
client

 POP3 “download-and-
keep”: copies of messages
on different clients

 POP3 is stateless across
sessions

IMAP
 keeps all messages in one

place: at server

 allows user to organize
messages in folders

 keeps user state across
sessions:

• names of folders and
mappings between
message IDs and folder
name

Socket programming

goal: learn how to build client/server applications that
communicate using sockets

socket: outbox/inbox between application process and
end-end-transport protocol

Internet

controlled

by OS

controlled by
app developer

transport

application

physical

link

network

process

transport

application

physical

link

network

process
socket

Socket programming

Two socket types for two transport services:

• UDP: unreliable datagram

• TCP: reliable, byte stream-oriented

Application Example:

1. client reads a line of characters (data) from its
keyboard and sends data to server

2. server receives the data and converts characters
to uppercase

3. server sends modified data to client

4. client receives modified data and displays line on
its screen

Client/server socket interaction: UDP

close

clientSocket

read datagram from

clientSocket

create socket:

clientSocket =

socket(AF_INET,SOCK_DGRAM)

Create datagram with server IP and

port=x; send datagram via

clientSocket

create socket, port= x:

serverSocket =

socket(AF_INET,SOCK_DGRAM)

read datagram from

serverSocket

write reply to

serverSocket

specifying

client address,

port number

server (running on serverIP) client

Example app: UDP client

from socket import *

serverName = ‘localhost’

serverPort = 12000

clientSocket = socket(AF_INET,

SOCK_DGRAM)

message = input(’Input lowercase sentence:’)

clientSocket.sendto(message.encode(),

(serverName, serverPort))

modifiedMessage, serverAddress =

clientSocket.recvfrom(2048)

print(modifiedMessage.decode())

clientSocket.close()

Python UDPClient
include Python’s socket

library

create UDP socket for

server

get user keyboard

input

Attach server name, port to

message; send into socket

print out received string

and close socket

read reply characters from

socket into string

Example app: UDP server

from socket import *

serverPort = 12000

serverSocket = socket(AF_INET, SOCK_DGRAM)

serverSocket.bind(('', serverPort))

print (“The server is ready to receive”)

while True:

message, clientAddress = serverSocket.recvfrom(2048)

modifiedMessage = message.decode().upper()

serverSocket.sendto(modifiedMessage.encode(),

clientAddress)

Python UDPServer

create UDP socket

bind socket to local port

number 12000

loop forever

Read from UDP socket into
message, getting client’s
address (client IP and port)

send upper case string

back to this client

Running Python

• Install the latest Python 3 from:

– https://www.python.org/downloads/

• Download the programs

– Materials used in class link from schedule

• Open two shell windows

– On a PC, type “cmd” in the search box

– On a Mac, open a terminal

• In one shell, type:

– python udpserver.py

• In the other, type:

– python udpclient.py

Socket programming with TCP

client must contact server

 server process must first be
running

 server must have created
socket that welcomes
client’s contact

client contacts server by:

 Creating TCP socket,
specifying IP address, port
number of server process

 when client creates socket:
client TCP establishes
connection to server TCP

 when contacted by client,
server TCP creates new socket
for server process to
communicate with that
particular client

• allows server to talk with
multiple clients

• source port numbers used
to distinguish clients
(more in Chap 3)

TCP provides reliable, in-order
byte-stream transfer (“pipe”)
between client and server

application viewpoint:

Client/server socket interaction: TCP

wait for incoming

connection request
connectionSocket =

serverSocket.accept()

create socket,
port=x, for incoming

request:
serverSocket = socket()

create socket,
connect to hostid, port=x

clientSocket = socket()

server (running on hostid) client

send request using

clientSocketread request from

connectionSocket

write reply to

connectionSocket

TCP
connection setup

close

connectionSocket

read reply from

clientSocket

close

clientSocket

Example app: TCP client

from socket import *

serverName = ’localhost’

serverPort = 12000

clientSocket = socket(AF_INET, SOCK_STREAM)

clientSocket.connect((serverName,serverPort))

sentence = input(‘Input lowercase sentence:’)

clientSocket.send(sentence.encode())

modifiedSentence = clientSocket.recv(1024)

print (‘From Server:’, modifiedSentence.decode())

clientSocket.close()

Python TCPClient

create TCP socket for

server, remote port 12000

No need to attach server

name, port

Example app: TCP server

from socket import *

serverPort = 12000

serverSocket = socket(AF_INET,SOCK_STREAM)

serverSocket.bind((‘’,serverPort))

serverSocket.listen(1)

print(‘The server is ready to receive’)

while True:

connectionSocket, addr = serverSocket.accept()

sentence = connectionSocket.recv(1024).decode()

capitalizedSentence = sentence.upper()

connectionSocket.send(capitalizedSentence.

encode())

connectionSocket.close()

Python TCPServer

create TCP welcoming

socket

server begins listening for

incoming TCP requests

loop forever

server waits on accept()

for incoming requests, new
socket created on return

read bytes from socket (but

not address as in UDP)

close connection to this

client (but not welcoming

socket)

Getahead: DNS

DNS: domain name system

people: many identifiers:

• SSN, name, passport #

Internet hosts, routers:

• IP address (32 bit) -
used for addressing
datagrams

• “name”, e.g.,
www.yahoo.com -
used by humans

Q: how to map between IP
address and name, and
vice versa ?

Domain Name System:
 distributed database

implemented in hierarchy of
many name servers

 application-layer protocol: hosts,
name servers communicate to
resolve names (address/name
translation)

• note: core Internet function,
implemented as application-
layer protocol

• complexity at network’s
“edge”

DNS: services, structure

why not centralize DNS?
 single point of failure

 traffic volume

 distant centralized database

 maintenance

DNS services
 hostname to IP address

translation

 host aliasing
• canonical, alias names

 mail server aliasing

 load distribution

• replicated Web
servers: many IP
addresses correspond
to one name

A: doesn‘t scale!

Root DNS Servers

com DNS servers org DNS servers edu DNS servers

poly.edu

DNS servers

umass.edu

DNS servers
yahoo.com

DNS servers
amazon.com

DNS servers

pbs.org

DNS servers

DNS: a distributed, hierarchical database

client wants IP for www.amazon.com; 1st approximation:

 client queries root server to find com DNS server

 client queries .com DNS server to get amazon.com DNS server

 client queries amazon.com DNS server to get IP address for
www.amazon.com

… …

DNS: root name servers

 contacted by local name server that can not resolve name

 root name server:

• contacts authoritative name server if name mapping not known

• gets mapping

• returns mapping to local name server

13 logical root name
“servers” worldwide
•each “server” replicated
many times

a. Verisign, Los Angeles CA

(5 other sites)

b. USC-ISI Marina del Rey, CA

l. ICANN Los Angeles, CA

(41 other sites)

e. NASA Mt View, CA

f. Internet Software C.

Palo Alto, CA (and 48 other

sites)

i. Netnod, Stockholm (37 other sites)

k. RIPE London (17 other sites)

m. WIDE Tokyo

(5 other sites)

c. Cogent, Herndon, VA (5 other sites)

d. U Maryland College Park, MD

h. ARL Aberdeen, MD

j. Verisign, Dulles VA (69 other sites)

g. US DoD Columbus,

OH (5 other sites)

TLD, authoritative servers

top-level domain (TLD) servers:
• responsible for com, org, net, edu, aero, jobs, museums,

and all top-level country domains, e.g.: uk, fr, ca, jp

• Network Solutions maintains servers for .com TLD

• Educause for .edu TLD

authoritative DNS servers:
• organization’s own DNS server(s), providing

authoritative hostname to IP mappings for organization’s
named hosts

• can be maintained by organization or service provider

Local DNS name server

 does not strictly belong to hierarchy

 each ISP (residential ISP, company, university) has
one
• also called “default name server”

 when host makes DNS query, query is sent to its
local DNS server
• has local cache of recent name-to-address translation

pairs (but may be out of date!)

• acts as proxy, forwards query into hierarchy

requesting host
cis.poly.edu

gaia.cs.umass.edu

root DNS server

local DNS server
dns.poly.edu

1

2
3

4

5

6

authoritative DNS server

dns.cs.umass.edu

7
8

TLD DNS server

DNS name
resolution example

 host at cis.poly.edu
wants IP address for
gaia.cs.umass.edu

iterated query:
 contacted server

replies with name of
server to contact

 “I don’t know this
name, but ask this
server”

45

6

3

recursive query:
 puts burden of name

resolution on

contacted name

server

 heavy load at upper

levels of hierarchy?

requesting host
cis.poly.edu

gaia.cs.umass.edu

root DNS server

local DNS server
dns.poly.edu

1

2
7

authoritative DNS server

dns.cs.umass.edu

8

DNS name
resolution example

TLD DNS
server

DNS: caching, updating records

 once (any) name server learns mapping, it caches
mapping
• cache entries timeout (disappear) after some time (TTL)

• TLD servers typically cached in local name servers

• thus root name servers not often visited

 cached entries may be out-of-date (best effort
name-to-address translation!)
• if name host changes IP address, may not be known

Internet-wide until all TTLs expire

 update/notify mechanisms proposed IETF standard
• RFC 2136

DNS records

DNS: distributed database storing resource records (RR)

type=NS
• name is domain (e.g.,

foo.com)

• value is hostname of
authoritative name
server for this domain

RR format: (name, value, type, ttl)

type=A
 name is hostname

 value is IP address

type=CNAME
 name is alias name for some

“canonical” (the real) name

 www.ibm.com is really

servereast.backup2.ibm.com

 value is canonical name

type=MX
 value is name of mailserver

associated with name

DNS protocol, messages

 query and reply messages, both with same message
format

message header

 identification: 16 bit # for

query, reply to query uses

same #

 flags:

 query or reply

 recursion desired

 recursion available

 reply is authoritative

identification flags

questions

questions (variable # of questions)

additional RRs# authority RRs

answer RRs

answers (variable # of RRs)

authority (variable # of RRs)

additional info (variable # of RRs)

2 bytes 2 bytes

name, type fields
for a query

RRs in response
to query

records for
authoritative servers

additional “helpful”
info that may be used

identification flags

questions

questions (variable # of questions)

additional RRs# authority RRs

answer RRs

answers (variable # of RRs)

authority (variable # of RRs)

additional info (variable # of RRs)

DNS protocol, messages

2 bytes 2 bytes

Inserting records into DNS

 example: new startup “Network Utopia”
 register name networkuptopia.com at DNS registrar

(e.g., Network Solutions)
• provide names, IP addresses of authoritative name server

(primary and secondary)

• registrar inserts two RRs into .com TLD server:
(networkutopia.com, dns1.networkutopia.com, NS)

(dns1.networkutopia.com, 212.212.212.1, A)

 create authoritative server type A record for
www.networkuptopia.com; type MX record for
networkutopia.com

Before You Go

On a sheet of paper, answer the following

(ungraded) question (no names, please):

What was the muddiest point in

today’s class?

