
The Web

Session 4
INST 346

Technologies, Infrastructure and Architecture

Quiz

• Start: 5:00 sharp
• End: 5:05 sharp (pencil down or zero credit)
• Include your name!
• No communication with anyone till 5:05

– No email, no talking, no SMS, no chat, …
– Even if you finish early!

• Open book, open notes, open Web, open mind

Goals for Today

• Finish HTTP

• Getahead: Email

• Wireshark preview

HTTP request message

 two types of HTTP messages: request, response
 HTTP request message:

• ASCII (human-readable format)

request line
(GET, POST, HEAD
commands)

header
lines

carriage return, line feed
at start of line indicates
end of header lines

GET /index.html HTTP/1.1\r\n
Host: www-net.cs.umass.edu\r\n
User-Agent: Firefox/3.6.10\r\n
Accept: text/html,application/xhtml+xml\r\n
Accept-Language: en-us,en;q=0.5\r\n
Accept-Encoding: gzip,deflate\r\n
Accept-Charset: ISO-8859-1,utf-8;q=0.7\r\n
Keep-Alive: 115\r\n
Connection: keep-alive\r\n
\r\n

carriage return character
line-feed character

* Check out the online interactive exercises for more
examples: http://gaia.cs.umass.edu/kurose_ross/interactive/

HTTP request message: general format

request
line

header
lines

body

method sp sp cr lfversionURL

cr lfvalueheader field name

cr lfvalueheader field name

~~ ~~

cr lf

entity body~~ ~~

Method types

HTTP/1.0:
 GET
 POST

• input is uploaded to
server in entity body

 HEAD
• asks server to leave

requested object out
of response

HTTP/1.1:
 GET, POST, HEAD
 PUT

• uploads file in entity
body to path specified
in URL field

 DELETE
• deletes file specified in

the URL field

HTTP response message

status line
(protocol
status code
status phrase)

header
lines

data, e.g.,
requested
HTML file

HTTP/1.1 200 OK\r\n
Date: Sun, 26 Sep 2010 20:09:20 GMT\r\n
Server: Apache/2.0.52 (CentOS)\r\n
Last-Modified: Tue, 30 Oct 2007 17:00:02

GMT\r\n
ETag: "17dc6-a5c-bf716880"\r\n
Accept-Ranges: bytes\r\n
Content-Length: 2652\r\n
Keep-Alive: timeout=10, max=100\r\n
Connection: Keep-Alive\r\n
Content-Type: text/html; charset=ISO-8859-

1\r\n
\r\n
data data data data data ...

* Check out the online interactive exercises for more
examples: http://gaia.cs.umass.edu/kurose_ross/interactive/

HTTP response status codes

200 OK
• request succeeded, requested object later in this msg

301 Moved Permanently
• requested object moved, new location specified later in this msg

(Location:)
400 Bad Request

• request msg not understood by server
404 Not Found

• requested document not found on this server
505 HTTP Version Not Supported

 status code appears in 1st line in server-to-
client response message.

 some sample codes:

Cookies

Cookies
what cookies can be used

for:
 authorization
 shopping carts
 recommendations
 user session state (Web

e-mail)

cookies and privacy:
 cookies permit sites to

learn a lot about you
 you may supply name and

e-mail to sites

aside

how to keep “state”:
 protocol endpoints: maintain state at

sender/receiver over multiple
transactions

 cookies: http messages carry state

Web caches (proxy server)

 user sets browser: Web
accesses via cache
 browser sends all HTTP

requests to cache
• object in cache: cache

returns object
• else cache requests

object from origin
server, then returns
object to client

goal: satisfy client request without involving origin server

client

proxy
server

client

origin
server

Why Web caching

 reduce response time for client request

 reduce traffic on an institution’s access link

 Internet dense with caches enables low-bandwidth
content providers to effectively deliver content

Caching example: without local cache

origin
servers

public
Internet

institutional
network 1 Gbps LAN

1.54 Mbps
access link

assumptions:
 avg object size: 100K bits
 avg request rate from browsers to

origin servers:15/sec
 avg data rate to browsers: 1.50 Mbps
 RTT from institutional router to any

origin server: 2 sec
 access link rate: 1.54 Mbps

consequences:
 LAN utilization: 15%
 access link utilization = 99%
 total delay = Internet delay + access

delay + LAN delay
= 2 sec + minutes + usecs

problem!

Caching example: install local cache

Calculating access link
utilization, delay with cache:
 suppose cache hit rate is 0.4

• 40% requests satisfied at cache,
60% requests satisfied at origin

origin
servers

1.54 Mbps
access link

 access link utilization:
 60% of requests use access link

 data rate to browsers over access link
= 0.6*1.50 Mbps = .9 Mbps
 utilization = 0.9/1.54 = .58

 total delay
 = 0.6 * (delay from origin servers) +0.4

* (delay when satisfied at cache)

 = 0.6 (2.01) + 0.4 (~msecs) = ~ 1.2 secs

public
Internet

institutional
network 1 Gbps LAN

local web
cache

Conditional GET

 Goal: don’t send object if
cache has up-to-date
cached version
• no object transmission

delay
• lower link utilization

 cache: specify date of
cached copy in HTTP
request
If-modified-since:
<date>

 server: response contains
no object if cached copy
is up-to-date:
HTTP/1.0 304 Not
Modified

HTTP request msg
If-modified-since: <date>

HTTP response
HTTP/1.0

304 Not Modified

object
not

modified
before
<date>

HTTP request msg
If-modified-since: <date>

HTTP response
HTTP/1.0 200 OK

<data>

object
modified

after
<date>

client server

Getahead: Email

Electronic mail

Three major components:
 user agents
 mail servers
 simple mail transfer

protocol: SMTP

User Agent
 a.k.a. “mail reader”
 composing, editing, reading

mail messages
 e.g., Outlook, Thunderbird,

iPhone mail client
 outgoing, incoming

messages stored on server

user mailbox

outgoing
message queue

mail
server

mail
server

mail
server

SMTP

SMTP

SMTP

user
agent

user
agent

user
agent

user
agent

user
agent

user
agent

Electronic mail: mail servers

mail servers:
 mailbox contains incoming

messages for user
 message queue of outgoing

(to be sent) mail messages
 SMTP protocol between

mail servers to send email
messages
• client: sending mail

server
• “server”: receiving mail

server

mail
server

mail
server

mail
server

SMTP

SMTP

SMTP

user
agent

user
agent

user
agent

user
agent

user
agent

user
agent

Electronic Mail: SMTP [RFC 2821]

 uses TCP to reliably transfer email message from
client to server, port 25

 direct transfer: sending server to receiving
server

 three phases of transfer
• handshaking (greeting)
• transfer of messages
• closure

 command/response interaction (like HTTP)
• commands: ASCII text
• response: status code and phrase

 messages must be in 7-bit ASCI

user
agent

Scenario: Alice sends message to Bob

1) Alice uses UA to compose
message “to”
bob@someschool.edu

2) Alice’s UA sends message
to her mail server; message
placed in message queue

3) client side of SMTP opens
TCP connection with Bob’s
mail server

4) SMTP client sends Alice’s
message over the TCP
connection

5) Bob’s mail server places the
message in Bob’s mailbox

6) Bob invokes his user agent
to read message

mail
server

mail
server

1

2 3 4
5

6

Alice’s mail server Bob’s mail server

user
agent

Sample SMTP interaction
S: 220 hamburger.edu
C: HELO crepes.fr
S: 250 Hello crepes.fr, pleased to meet you
C: MAIL FROM: <alice@crepes.fr>
S: 250 alice@crepes.fr... Sender ok
C: RCPT TO: <bob@hamburger.edu>
S: 250 bob@hamburger.edu ... Recipient ok
C: DATA
S: 354 Enter mail, end with "." on a line by itself
C: Do you like ketchup?
C: How about pickles?
C: .
S: 250 Message accepted for delivery
C: QUIT
S: 221 hamburger.edu closing connection

Try SMTP interaction for yourself:

 telnet servername 25
 see 220 reply from server
 enter HELO, MAIL FROM, RCPT TO, DATA, QUIT

commands

above lets you send email without using email client (reader)

SMTP: final words

 SMTP uses persistent
connections

 SMTP requires message
(header & body) to be in
7-bit ASCII

 SMTP server uses
CRLF.CRLF to
determine end of message

comparison with HTTP:
 HTTP: pull
 SMTP: push

 both have ASCII
command/response
interaction, status codes

 HTTP: each object
encapsulated in its own
response message

 SMTP: multiple objects
sent in multipart message

Before You Go

On a sheet of paper, answer the following
(ungraded) question (no names, please):

What was the muddiest point in
today’s class?

	The Web
	Quiz
	Goals for Today
	HTTP request message
	HTTP request message: general format
	Method types
	HTTP response message
	HTTP response status codes
	Cookies
	Cookies
	Web caches (proxy server)
	Why Web caching
	Caching example: without local cache
	Caching example: install local cache
	Conditional GET
	Getahead: Email
	Electronic mail
	Electronic mail: mail servers
	Electronic Mail: SMTP [RFC 2821]
	Scenario: Alice sends message to Bob
	Sample SMTP interaction
	Try SMTP interaction for yourself:
	SMTP: final words
	Before You Go

