N/ College of Information Studies

i ~
ﬁiﬁ 'L.E"-‘-f‘ University of Marvland Hormbake Library Building College Park, MD 20742-4343

The Web

Session 4
INST 346
Technologies, Infrastructure and Architecture

Quiz

Start: 5:00 sharp
End: 5:05 sharp (pencil down or zero credit)
Include your name!

No communication with anyone till 5:05
— No email, no talking, no SMS, no chat, ...
— Even if you finish early!

Open book, open notes, open Web, open mind

Goals for Today

e FInish HTTP
e Getahead: Email

o Wireshark preview

HTTP request message

= two types of HT TP messages: request, response

* HTTP request message:
e ASCII (human-readable format)

request line
(GET, POST, HEAD

commands) GET /index.html HTTP/1. 1N\
Host: www-net.cs.umass.edu\r\n
User-Agent: Firefox/3.6.10\r\n
header Accept: text/html,application/xhtml+xmI\r\n
_ Accept-Language: en-us,en;g=0.5\r\n
lines | Accept-Encoding: gzip,deflate\r\n
Accept-Charset: 1S0-8859-1,utf-8;9g=0.7\r\n
carriage return, line feed | Keep-Alive: 115\r\n
at start of line indicates | Connection: keep-alive\r\n

end of header lines — \r\n

carriage return character
line-feed character

* Check out the online interactive exercises for more
examples: http://gaia.cs.umass.edu/kurose_ross/interactive/

HTTP request message: general format

method |sp| URL |sp| version |cr| If lri?]CelueSt
header field name value |cr| If N
header
8 lines
header field name value |cr| If
cr| If
entity body - body

Method types

HTTP/I.0: HTTP/I.I:
= GET = GET, POST, HEAD
= POST = PUT
* input is uploaded to e uploads file in entity
server in entity body body to path specified
= HEAD in URL field
* asks server to leave = DELETE
requested object out deletes file specified in

of response the URL field

HTTP response message

status line

(protocol ~__
HTTP/1.1 200 OK\r\n

status code S 26 Sep 2010 20:09:20 GMT\r\
Date: Sun, ep 1 :09: MT\r\n
status phrase) Server: Apache/2.0.52 (CentOS)\r\n
Last-Modified: Tue, 30 Oct 2007 17:00:02
GMT\r\n
header ETag: "17dc6-a5c-bf716880\r\n
Accept-Ranges: bytes\r\n

———

lines Content-Length: 2652\r\n
Keep-Alive: timeout=10, max=100\r\n
Connection: Keep-Alive\r\n
Content-Type: text/html; charset=150-8859-
I\r\n

data, e.g., \r\n

requested data data data data data ...

HTML file —

* Check out the online interactive exercises for more
examples: http://gaia.cs.umass.edu/kurose_ross/interactive/

HT TP response status codes

» status code appears in 1st line in server-to-
client response message.

= some sample codes:
200 OK

* request succeeded, requested object later in this msg
301 Moved Permanently

* requested object moved, new location specified later in this msg
(Location:)

400 Bad Request

* request msg not understood by server

404 Not Found

* requested document not found on this server

505 HTTP Version Not Supported

Cookies

1)

™
-
GET http://www.example.com/ HTTP/1.1
rd
N
HTTP/1.1 200 0K
set-Cookie: session-id=12345;
,
7

GET http://www.example.com/ HTTP/1.1
Cookie: sessijon-id=12345;

IETYE]

Cookies

what cookies can be used
for:

= authorization

" shopping carts

= recommendations

" user session state (Web
e-mail)

how to keep ‘state :

aside —

cookies and privacy:

" cookies permit sites to
learn a lot about you

" you may supply name and
e-mail to sites

= protocol endpoints: maintain state at

sender/receiver over multiple
transactions

= cookies: http messages carry state

Web caches (proxy server)

goal: satisfy client request without involving origin server

= user sets browser: Web
accesses via cache

" browser sends all HTTP
requests to cache

* object in cache: cache
returns object

* else cache requests
object from origin
server, then returns
object to client

origin
server

Why Web caching

" reduce response time for client request
» reduce traffic on an institution’ s access link

" |nternet dense with caches enables low-bandwidth
content providers to effectively deliver content

Caching example: without local cache

assumptions:

avg object size: 100K bits

avg request rate from browsers to
origin servers:|5/sec

avg data rate to browsers: [.50 Mbps

RTT from institutional router to any
origin server:?2 sec

access link rate: 1.54 Mbps

consequences.

LAN utilization: 15% problem!
access link utilization

total delay = Internet delay + access

delay + LAN delay
= 2 sec + minutes + usecs

origin
servers

1.54 Mbps
access link

Caching example: install local cache

Calculating access link
utilization, delay with cache:

" suppose cache hit rate is 0.4

e 40% requests satisfied at cache,
60% requests satisfied at origin

origin
servers

= access link utilization:
= 60% of requests use access link
= data rate to browsers over access link
= 0.6*1.50 Mbps = .9 Mbps
= utilization = 0.9/1.54 = .58

1.54 Mbps
access link

= total delay :
= = 0.6 * (delay from origin servers) +0.4 =\ | web
* (delay when satisfied at cache) e S S Rl che

= =0.6 (2.01) + 0.4 (~msecs) = ~ |.2 secs

Conditional GET

client /™ = server
= Goal: don’ t send object if e
cache has up-to-date
cached version | HTTPrequest msg object
: . If-modified-since: <date> —
* no object transmission not
delay —— modif
e lower link utilization — HT'II'_lF;;IeD?f(())nse bc;?oree)d
" cache: specify date of 304 Not Modified <date>
cached copy in HTTP
request 0 @0 TTTT TS ST S SSSsssss=e-
If-modified-since:
<date> — HTTP request msg
= server: response contains f-modified-since: <date> — object
no object if cached copy e mgf?g:ed
is up-to-date: — HTTRILO 200 OK <date>
HTTP/1.0 304 Not <data>
Modified

Getahead: Email

Electronic mail

“

Three major components:

user agents
mail servers

simple mail transfer
protocol: SMTP

User Agent

11 o ?”
a.k.a. “mail reader
composing, editing, reading
mail messages

e.g., Outlook, Thunderbird,
iPhone mail client

outgoing, incoming
messages stored on server

mail
server

00000

mail
server

00000

outgoing

message queue

[1 user mailbox

agent [¥

user =5

Electronic mail: mail servers

mail servers: user

* mailbox contains incoming
messages for user

" message queue of outgoing
(to be sent) mail messages

= SMTP protocol between

mail
server

00000

mail servers to send email SMTP
messages
 client: sending mail .
mail
server

server

00000

user | ==
agent [¥

» “server’: receiving mail
server

Electronic Mail: SMTP [RFC 2821]

= uses [CP to reliably transfer email message from
client to server, port 25

" direct transfer: sending server to receiving
server
" three phases of transfer
e handshaking (greeting)
e transfer of messages
e closure
= command/response interaction (like HTTP)
e commands: ASCI| text
* response: status code and phrase

" messages must be in 7-bit ASCI

Scenario: Alice sends messagse to Bob

1) Alice uses UA to compose 4) SMTP client sends Alice’ s

message " to’ message over the TCP
bob@someschool . edu connection
2) Alice’ s UA sends message 5) Bob’ s mail server places the
to her mail server; message message in Bob s mailbox
placed in message queue 6) Bob invokes his user agent
3) client side of SMTP opens to read message
TCP connection with Bob’ s
mail server

server

= server
I 3 i Pogk- T
L0000 DD [

Alice’ s mail server Bob’ s mail server

Sample SMTP interaction

- 220 hamburger.edu

- HELO crepes.fr

- 250 Hello crepes.fr, pleased to meet you

- MAIL FROM: <alice@crepes.fr>

: 250 alice@crepes.fr... Sender ok

- RCPT TO: <bob@hamburger.edu>

: 250 bob@hamburger.edu ... Recipient ok

- DATA

: 354 Enter mail, end with "."" on a line by i1tself

: Do you like ketchup?
: How about pickles?

- 250 Message accepted for delivery
> QUIT
- 221 hamburger.edu closing connection

DOOLOOOOLOUOLOLOW!LOOWm

Try SMTP interaction for yourself:

= telnet servername 25

" see 220 reply from server

= enter HELO, MAIL FROM, RCPT TO, DATA, QUIT
commands

above lets you send email without using email client (reader)

SMTP: final words

SMTP uses persistent
connections

SMTP requires message
(header & body) to be in
7-bit ASCI|

SMTP server uses
CRLF.CRLF to
determine end of message

comparison with HTTP:

HTTP: pull
SMTP: push

both have ASCII

command/response
interaction, status codes

HTTP: each object
encapsulated in its own
response message

SMTP: multiple objects
sent in multipart message

Before You Go

On a sheet of paper, answer the following
(ungraded) question (no names, please):

What was the muddiest point In
today’s class?

	The Web
	Quiz
	Goals for Today
	HTTP request message
	HTTP request message: general format
	Method types
	HTTP response message
	HTTP response status codes
	Cookies
	Cookies
	Web caches (proxy server)
	Why Web caching
	Caching example: without local cache
	Caching example: install local cache
	Conditional GET
	Getahead: Email
	Electronic mail
	Electronic mail: mail servers
	Electronic Mail: SMTP [RFC 2821]
	Scenario: Alice sends message to Bob
	Sample SMTP interaction
	Try SMTP interaction for yourself:
	SMTP: final words
	Before You Go

