
Service Model

Session 3
INST 346

Technologies, Infrastructure and Architecture

Goals for Today

• Postgame the homework

• Application-layer Internet API

• Getahead: Hypertext Transfer Protocol

• What to expect on Thursday’s quiz

Muddiest Points

• Queueing delay formulas (La/R, …)

• Circuit switching
– Frequency Division Multiplexing

• Transmission delay vs. propagation delay

• ISP vs. IXP vs. Content Provider Network

Internet protocol stack
 application: supporting network

applications
• FTP, SMTP, HTTP

 transport: process-process data
transfer
• TCP, UDP

 network: routing of datagrams from
source to destination
• IP, routing protocols

 link: data transfer between
neighboring network elements
• Ethernet, 802.111 (WiFi), PPP

 physical: bits “on the wire”

application

transport

network

link

physical

ISO/OSI reference model

 presentation: allow applications
to interpret meaning of data,
e.g., encryption, compression,
machine-specific conventions
 session: synchronization,

checkpointing, recovery of data
exchange
 Internet stack “missing” these

layers!
• these services, if needed, must be

implemented in application

application
presentation

session
transport
network

link
physical

Why layering?
dealing with complex systems:
 explicit structure allows identification of, and describing

relationship between complex system’s pieces
 modularization eases maintenance, updating of system

• change of implementation of layer’s service transparent to
rest of system

 some efficiency penalty
• Worth it for general applications
• Not practical in some specialized cases (e.g., planetary

missions)

Chapter 2: application layer

our goals:
 conceptual, aspects of

network application
protocols
• transport-layer

service models
• client-server

paradigm
• (peer-to-peer

paradigm)

 learn to create network
applications
• socket API

 learn about protocols by
examining popular
application-level protocols
• Web: HTTP
• Email: SMTP / POP3 / IMAP
• Domain Name Service

Some network apps
 email
 Web
 streaming video (YouTube, Hulu, Netflix, …)
 remote login
 FTP
 P2P file sharing
 voice over IP (e.g., Skype)
 multi-user network games
 real-time conferencing
 social networking
 search
 …

Creating a network app

write programs that:
 run on (different) end systems
 communicate over network
 e.g., web server software

communicates with browser
software

no need to write software
for network-core devices

 network-core devices do not
run user applications

 applications on end systems
allows for rapid app
development, propagation

application
transport
network
data link
physical

application
transport
network
data link
physical

application
transport
network
data link
physical

Client-server architecture (e.g., Web)

server:
 always-on host
 permanent IP address
 data centers for scaling

clients:
 communicate with server
 may be intermittently

connected
 may have dynamic IP

addresses
 do not communicate directly

with each other

client/server

P2P architecture (e.g., Skype)
 no central server
 arbitrary end systems

directly communicate
 peers request service from

other peers, provide service
in return to other peers
• self scalability – new

peers bring new service
capacity, as well as new
service demands

 peers are intermittently
connected and change IP
addresses
• complex management

peer-peer

Processes communicating

process: program running
within a host

 within a host, processes
communicate using inter-
process communication
(defined by OS)

 processes in different hosts
communicate by exchanging
messages

client process: process that
initiates communication

server process: process that
waits to be contacted

 note: P2P applications have
both client & server processes

clients, servers

Sockets
 process sends/receives messages to/from its socket
 socket is analogous to an outbox or inbox

• sending process places a message in an “outbox” (socket)
• sending process relies on transport infrastructure to deliver

message to “inbox” (socket) at receiving process
 sockets are identified by numbers

• some sockets are defined by convention (e.g., 80=Web server)

Internet

controlled
by OS

controlled by
app developer

transport

application

physical
link

network

process

transport

application

physical
link

network

process
socket

The address of a socket
 to send or receive messages, a process must have a socket
 to identify that socket, the socket must have a unique identifier
 Each host has a unique 32-bit IP address

• but many processes can be running on same host
 the unique identifier for a socket includes both the IP address of the

host and the port number(s) associated with that process
 examples of “well known” port numbers:

• Web server: 80
• mail server: 25

 to identify the gaia.cs.umass.edu web server:
• IP address: 128.119.245.12
• port number: 80

 processes can spawn new processes (and thus new port numbers)
• So (if desired) each process can communicate with just one other process

at a time

App-layer protocol must define:
 types of messages

• e.g., request, response
 message syntax

• what fields in messages
• how fields are delineated

 message semantics
• meaning of information in fields

 rules for when and how processes send & respond to messages

“open” protocols:
 e.g., HTTP, SMTP
 defined in “Requests for Comment” (RFC’s)
 designed for interoperability
proprietary protocols:
 e.g., Skype

What transport service does an app need?

data integrity
 some apps require 100%

reliable data transfer
 other apps (e.g., audio) can

tolerate some loss

timing
 some apps (e.g., Internet

telephony, interactive
games) require low delay

throughput
 some apps (e.g., video)

need some minimum
throughput

 other apps (“elastic apps”)
make use of whatever
throughput they get

security
 encryption, data integrity, …

Transport service requirements: common apps

application

file transfer
e-mail

Web documents
audio/video

video
interactive games

text messaging

data loss

no loss
no loss
no loss
loss-tolerant
loss-tolerant
loss-tolerant
no loss

throughput

elastic
elastic
elastic
5 kbps-1 Mbps
10 kbps-5 Mbps
few kbps up
elastic

timing

no limits
no limits
no limits
100’s msec
few secs
100’s msec
yes and no

Internet transport protocols

TCP service (pseudo-circuit):
 connection-oriented: simulates

a circuit between client and
server processes (takes time
to set up)

 reliable transport between
sending and receiving process

 flow control: sender won’t
overwhelm receiver

 congestion control: throttle
sender when network
overloaded

 does not provide: timing,
minimum throughput
guarantee, security

UDP service (raw Internet):
 packet delivery service: no

connection setup effort
 unreliable data transfer

between sending and
receiving process
 does not provide: reliability,

flow control, congestion
control, timing, throughput
guarantee, security

Internet apps: application, transport protocols

application

e-mail
remote terminal access

Web
file transfer

streaming media
Internet telephony

application
layer protocol

SMTP [RFC 2821]
Telnet [RFC 854]
HTTP [RFC 2616]
FTP [RFC 959]
HTTP, RTP [RFC 1889]
SIP, RTP, proprietary

underlying
transport protocol

TCP
TCP
TCP
TCP
UDP or TCP
UDP (TCP fallback)

Securing TCP (Preview of Session 22)

TCP (and UDP)
 no encryption
 passwds sent into socket traverse Internet in cleartext
SSL
 provides encrypted TCP connection
 data integrity
 end-point authentication
SSL is at app layer
 apps use SSL libraries, that “talk” to TCP

Getahead

The (World-Wide) Web
 a web page consists of base HTML-file which

includes several referenced objects
 an object can be HTML file, JPEG image, Java

applet, audio file,…
 each object is addressable by a URL, e.g.,

http://www.someschool.edu/someDept/pic.gif

host name path nameprotocol

HTTP overview

HTTP: hypertext transfer
protocol

 Web’s application layer
protocol

 client/server model
• client: “browser”

requests (using HTTP),
receives (using HTTP),
and displays Web objects

• server: “Web server”
sends (using HTTP)
objects in response to
requests

PC running
Firefox browser

server
running

Apache Web
server

iPhone running
Safari browser

HTTP uses TCP

 client creates a socket and
initiates a TCP connection
to port 80 on server
 server creates a new socket

for this connection,
forwards the TCP to that
socket, and accepts the
connection there.
 HTTP messages

(application-layer protocol
messages) are exchanged
between browser (HTTP
client) and Web server
(HTTP server)
 Eventually, the TCP

connection is closed

HTTP is “stateless”
 server maintains no

information about
past client requests

protocols that maintain
“state” are complex!

 past history (state) must be
maintained

 if server/client crashes, their
views of “state” may be
inconsistent, must be
reconciled

aside

HTTP (1.0)
suppose user enters URL:

1. HTTP client initiates TCP connection
to HTTP server (process) at
www.someSchool.edu on port 80

3. HTTP client sends HTTP request
message (containing URL) into TCP
connection socket. Message
indicates that client wants object
someDepartment/home.index

2. HTTP server at host
www.someSchool.edu waiting for
TCP connection at port 80.
“accepts” connection, notifying
client of new port number

4. HTTP server receives request
message, forms response message
containing requested object, and
sends message into its sockettime

www.someSchool.edu/someDepartment/home.index

5. HTTP client receives response
message containing html file,
displays html.

7. Parsing html file, the browser finds
10 referenced jpeg objects and
starts again at 1. (10 times!)

6. HTTP server closes TCP connection.

HTTP (1.0) response time

Define Round Trip Time (RTT) as
time for a small packet to travel
from client to server and back

HTTP response time:
 one RTT to initiate TCP

connection
 one RTT for HTTP request and

first few bytes of HTTP response
to return

 file transmission time
 non-persistent HTTP response

time =
2*RTT+ file transmission time

time to
transmit
file

initiate TCP
connection

RTT
request
file

RTT

file
received

time time

HTTP evolution

original HTTP (1.0)
 Set up TCP connection
 Send one object
 Close TCP connection
 Can require many TCP

connection setups for
one Web page (slow!)

persistent HTTP (1.1 & later)
 Set up the TCP

connection once
 Send all the objects on

one Web page
• Don’t close the connection

after each request
• Avoids repeated

connection setups
 Timeout: Close the TCP

connection after some
period with no activity

Better network utilization

original HTTP (1.0):
 requires 2 RTTs per object
 plus Operating System (OS)

overhead for each TCP
connection
 workaround: browsers can

open parallel TCP
connections to fetch
referenced objects

persistent HTTP:
 server leaves connection

open after sending
response
 client sends requests as

soon as it encounters a
referenced object
 as little as one RTT for all

the referenced objects

Quizzes
• Goals

– Begin to prep for Exam 1
– Incentive to keep up with the readings

• Format
– Every Thursday (except exam weeks); see schedule
– 5 minutes at start of class, sharply timed
– On paper (write directly on the quiz)
– Open book, open notes, open Web
– No communication with anyone until quiz ends!

Before You Go

On a sheet of paper, answer the following
(ungraded) question (no names, please):

What was the muddiest point in
today’s class?

	Service Model
	Goals for Today
	Muddiest Points
	Internet protocol stack
	ISO/OSI reference model
	Why layering?
	Chapter 2: application layer
	Some network apps
	Creating a network app
	Client-server architecture (e.g., Web)
	P2P architecture (e.g., Skype)
	Processes communicating
	Sockets
	The address of a socket
	App-layer protocol must define:
	What transport service does an app need?
	Transport service requirements: common apps
	Internet transport protocols
	Internet apps: application, transport protocols
	Securing TCP (Preview of Session 22)
	Getahead
	The (World-Wide) Web
	HTTP overview
	HTTP uses TCP
	HTTP (1.0)
	HTTP (1.0) response time
	HTTP evolution
	Better network utilization
	Quizzes
	Before You Go

