
Authentication

Session 23
INST 346

Technologies, Infrastructure and Architecture

Goals for Today

• Authentication
– Certificates

• PGP
• Getahead: SSL
• Lab 5

Authentication

Goal: Bob wants Alice to “prove” her identity to him

Protocol ap1.0: Alice says “I am Alice”

Failure scenario??
“I am Alice”

in a network,
Bob can not “see” Alice,
so Trudy simply declares

herself to be Alice“I am Alice”

Authentication

Goal: Bob wants Alice to “prove” her identity to him

Protocol ap1.0: Alice says “I am Alice”

Authentication: another try

Protocol ap2.0: Alice says “I am Alice” in an IP packet
containing her source IP address

Failure scenario??

“I am Alice”
Alice’s

IP address

Trudy can create
a packet

“spoofing”
Alice’s address“I am Alice”

Alice’s
IP address

Authentication: another try

Protocol ap2.0: Alice says “I am Alice” in an IP packet
containing her source IP address

Protocol ap3.0: Alice says “I am Alice” and sends her
secret password to “prove” it.

Failure scenario??

“I’m Alice”Alice’s
IP addr

Alice’s
password

OKAlice’s
IP addr

Authentication: another try

playback attack: Trudy
records Alice’s packet

and later
plays it back to Bob

“I’m Alice”Alice’s
IP addr

Alice’s
password

OKAlice’s
IP addr

“I’m Alice”Alice’s
IP addr

Alice’s
password

Protocol ap3.0: Alice says “I am Alice” and sends her
secret password to “prove” it.

Authentication: another try

Authentication: yet another try

Protocol ap3.1: Alice says “I am Alice” and sends her
encrypted secret password to “prove” it.

Failure scenario??

“I’m Alice”Alice’s
IP addr

encrypted
password

OKAlice’s
IP addr

record
and

playback
still works!

“I’m Alice”Alice’s
IP addr

encrypted
password

OKAlice’s
IP addr

“I’m Alice”Alice’s
IP addr

encrypted
password

Authentication: yet another try

Protocol ap3.1: Alice says “I am Alice” and sends her
encrypted secret password to “prove” it.

Goal: avoid playback attack

Failures, drawbacks?

nonce: number (R) used only once-in-a-lifetime
ap4.0: to prove Alice “live”, Bob sends Alice nonce, R. Alice

must return R, encrypted with shared secret key

“I am Alice”

R

K (R)A-B
Alice is live, and
only Alice knows

key to encrypt
nonce, so it must

be Alice!

Authentication: yet another try

Authentication: ap5.0
ap4.0 requires shared symmetric key
 can we authenticate using public key techniques?
ap5.0: use nonce, public key cryptography

“I am Alice”

R
Bob computes

K (R)A
-

“send me your public key”

K A
+

(K (R)) = RA
-

K A
+

and knows only Alice
could have the private
key, that encrypted R

such that
(K (R)) = RA

-
K A

+

ap5.0: security hole
man (or woman) in the middle attack: Trudy poses as Alice

(to Bob) and as Bob (to Alice)

I am Alice I am Alice
R

T
K (R)-

Send me your public key

TK
+

AK (R)-

Send me your public key

AK +

TK (m)
+

T
m = K (K (m))+

T
-

Trudy gets

sends m to Alice
encrypted with

Alice’s public key

AK (m)
+

A
m = K (K (m))+

A
-

R

difficult to detect:
 Bob receives everything that Alice sends, and vice versa.

(e.g., so Bob, Alice can meet one week later and recall
conversation!)

 problem is that Trudy receives all messages as well!

ap5.0: security hole
man (or woman) in the middle attack: Trudy poses as Alice (to

Bob) and as Bob (to Alice)

Certification authorities
 certification authority (CA): binds public key to particular

entity, E.
 E (person, router) registers its public key with CA.

• E provides “proof of identity” to CA.
• CA creates certificate binding E to its public key.
• certificate containing E’s public key digitally signed by CA – CA

says “this is E’s public key”

Bob’s
public

key K B
+

Bob’s
identifying

information

digital
signature
(encrypt)

CA
private

key K CA
-

K B
+

certificate for
Bob’s public key,

signed by CA

 when Alice wants Bob’s public key:
• gets Bob’s certificate (Bob or elsewhere).
• apply CA’s public key to Bob’s certificate, get Bob’s

public key

Bob’s
public

key K B
+

digital
signature
(decrypt)

CA
public

key
K CA

+

K B
+

Certification authorities

Secure e-mail

Alice:
 generates random symmetric private key, KS
 encrypts message with KS (for efficiency)
 also encrypts KS with Bob’s public key
 sends both KS(m) and KB(KS) to Bob

Alice wants to send confidential e-mail, m, to Bob.

KS().

KB().+

+ -

KS(m)

KB(KS)+

m

KS

KS

KB
+

Internet

KS().

KB().-

KB
-

KS

m
KS(m)

KB(KS)+

Secure e-mail

Bob:
 uses his private key to decrypt and recover KS
 uses KS to decrypt KS(m) to recover m

Alice wants to send confidential e-mail, m, to Bob.

KS().

KB().+

+ -

KS(m)

KB(KS)+

m

KS

KS

KB
+

Internet

KS().

KB().-

KB
-

KS

m
KS(m)

KB(KS)+

Secure e-mail (continued)
Alice wants to provide sender authentication message integrity

 Alice digitally signs message
 sends both message (in the clear) and digital signature

H(). KA().-

+ -

H(m)KA(H(m))-
m

KA
-

Internet

m

KA().+

KA
+

KA(H(m))-

m
H(). H(m)

compare

Secure e-mail (continued)
Alice wants to provide secrecy, sender authentication, message
integrity.

Alice uses three keys: her private key, Bob’s public key, newly
created symmetric key

H(). KA().-

+

KA(H(m))-
m

KA
-

m

KS().

KB().+

+

KB(KS)+

KS

KB
+

Internet

KS

Secure Sockets Layer

Application

TCP

IP

normal application

Application

SSL

TCP

IP

application with SSL

 SSL provides application programming interface
(API) to applications

 C and Java SSL libraries/classes readily available

Toy SSL: a simple secure channel

 handshake: Alice and Bob use their certificates,
private keys to authenticate each other and
exchange shared secret

 key derivation: Alice and Bob use shared secret to
derive set of keys

 data transfer: data to be transferred is broken up
into series of records

 connection closure: special messages to securely
close connection

Toy: a simple handshake

MS: master secret
EMS: encrypted master secret

Toy: key derivation
 considered bad to use same key for more than one

cryptographic operation
• use different keys for message authentication code (MAC) and

encryption
 four keys:

• Kc = encryption key for data sent from client to server
• Mc = MAC key for data sent from client to server
• Ks = encryption key for data sent from server to client
• Ms = MAC key for data sent from server to client

 keys derived from key derivation function (KDF)
• takes master secret and (possibly) some additional random data

and creates the keys

Toy: data records
 why not encrypt data in constant stream as we write it to

TCP?
• where would we put the MAC? If at end, no message integrity

until all data processed.
• e.g., with instant messaging, how can we do integrity check over

all bytes sent before displaying?
 instead, break stream in series of records

• each record carries a MAC
• receiver can act on each record as it arrives

 issue: in record, receiver needs to distinguish MAC from
data
• want to use variable-length records

length data MAC

Toy: sequence numbers

 problem: attacker can capture and replay record
or re-order records

 solution: put sequence number into MAC:
 MAC = MAC(Mx, sequence||data)
 note: no sequence number field

 problem: attacker could replay all records
 solution: use nonce

Toy: control information

 problem: truncation attack:
• attacker forges TCP connection close segment
• one or both sides thinks there is less data than there

actually is.
 solution: record types, with one type for closure

• type 0 for data; type 1 for closure
 MAC = MAC(Mx, sequence||type||data)

length type data MAC

Toy SSL: summary
en

cr
yp

te
d

bob.com

Toy SSL isn’t complete

 how long are fields?
 which encryption protocols?
 want negotiation?

• allow client and server to support different
encryption algorithms

• allow client and server to choose together specific
algorithm before data transfer

SSL cipher suite
 cipher suite

• public-key algorithm
• symmetric encryption algorithm
• MAC algorithm

 SSL supports several cipher
suites

 negotiation: client, server
agree on cipher suite
• client offers choice
• server picks one

common SSL symmetric
ciphers
 DES – Data Encryption

Standard: block
 3DES – Triple strength: block
 RC2 – Rivest Cipher 2: block
 RC4 – Rivest Cipher 4: stream

SSL Public key encryption
 RSA

Real SSL: handshake (1)

Purpose
1. server authentication
2. negotiation: agree on crypto algorithms
3. establish keys
4. client authentication (optional)

Real SSL: handshake (2)
1. client sends list of algorithms it supports, along with

client nonce
2. server chooses algorithms from list; sends back:

choice + certificate + server nonce
3. client verifies certificate, extracts server’s public

key, generates pre_master_secret, encrypts with
server’s public key, sends to server

4. client and server independently compute encryption
and MAC keys from pre_master_secret and nonces

5. client sends a MAC of all the handshake messages
6. server sends a MAC of all the handshake messages

Real SSL: handshaking (3)

last 2 steps protect handshake from tampering
 client typically offers range of algorithms, some

strong, some weak
 man-in-the middle could delete stronger algorithms

from list
 last 2 steps prevent this

• last two messages are encrypted

Real SSL: handshaking (4)

 why two random nonces?
 suppose Trudy sniffs all messages between Alice

& Bob
 next day, Trudy sets up TCP connection with

Bob, sends exact same sequence of records
• Bob (Amazon) thinks Alice made two separate orders

for the same thing
• solution: Bob sends different random nonce for each

connection. This causes encryption keys to be different
on the two days

• Trudy’s messages will fail Bob’s integrity check

SSL record protocol

data

data
fragment

data
fragmentMAC MAC

encrypted
data and MAC

encrypted
data and MAC

record
header

record
header

record header: content type; version; length

MAC: includes sequence number, MAC key Mx

fragment: each SSL fragment 214 bytes (~16 Kbytes)

SSL record format

content
type SSL version length

MAC

data

1 byte 2 bytes 3 bytes

data and MAC encrypted (symmetric algorithm)

Real SSL
connection

TCP FIN follows

everything
henceforth

is encrypted

Key derivation
 client nonce, server nonce, and pre-master secret input

into pseudo random-number generator.
• produces master secret

 master secret and new nonces input into another
random-number generator: “key block”
• because of resumption: TBD

 key block sliced and diced:
• client MAC key
• server MAC key
• client encryption key
• server encryption key
• client initialization vector (IV)
• server initialization vector (IV)

L5

	Authentication
	Goals for Today
	Authentication
	Authentication
	Authentication: another try
	Authentication: another try
	Authentication: another try
	Authentication: another try
	Authentication: yet another try
	Authentication: yet another try
	Authentication: yet another try
	Authentication: ap5.0
	ap5.0: security hole
	ap5.0: security hole
	Certification authorities
	Certification authorities
	Secure e-mail
	Secure e-mail
	Secure e-mail (continued)
	Secure e-mail (continued)
	Secure Sockets Layer
	Toy SSL: a simple secure channel
	Toy: a simple handshake
	Toy: key derivation
	Toy: data records
	Toy: sequence numbers
	Toy: control information
	Toy SSL: summary
	Toy SSL isn’t complete
	SSL cipher suite
	Real SSL: handshake (1)
	Real SSL: handshake (2)
	Real SSL: handshaking (3)
	Real SSL: handshaking (4)
	SSL record protocol
	SSL record format
	Real SSL�connection
	Key derivation
	L5

