8¢ .. College of Information Studies

i ~
ﬁiﬁ 'L.E"-‘-f‘ University of Marvland Hormbake Library Building College Park, MD 20742-4343

Authentication

Session 23
INST 346
Technologies, Infrastructure and Architecture

Goals for Today

Authentication
— Certificates

PGP
Getahead: SSL
Lab 5

Authentication

Goal: Bob wants Alice to “prove” her identity to him

Protocol ap 1.0: Alice says “| am Alice”

‘“ . ” ,,ﬂ_'-'L'!'I'.
lam Alice” - .

—

wia Failure scenario??

Authentication

Goal: Bob wants Alice to “prove” her identity to him

Protocol ap 1.0: Alice says “| am Alice”

‘.__'i-l]
i 's‘*‘f in a network,

59,11 Bob can not “see” Alice,
so Trudy simply declares
4/ .
./ “l am Alice” herself to be Alice

Authentication: another try

Protocol ap2.0: Alice says “I am Alice” in an IP packet
containing her source IP address

Alice’ s
IP address

“I am Alice” o
- 'ﬁﬁ

aat? Failure scenario??

Authentication: another try

Protocol ap2.0: Alice says “I am Alice” in an IP packet
containing her source IP address

£

o Trudy can create
/ o a packet
Alice’s | . . _ SPOOfmg

Authentication: another try

Protocol ap3.0: Alice says “| am Alice” and sends her
secret password to “prove’ it.

Alice, S Alice’ S i, : »
P addr | password| | M Allce A
- 's‘fﬁ
Alice’ s -r-ﬁz? Failure scenario??
— OK
IP addr

Authentication: another try

Protocol ap3.0: Alice says “| am Alice” and sends her
secret password to “prove’ it.

Alice’ s
IP addr

Alice’ s
password

“I'm Alice”| —

Alice’ s
IP addr

L playback attack: Trudy
e records Alice’ s packet

and later
plays it back to Bob

Alice’ s
IP addr

Alice’ s
password

“I’'m Alice”

Authentication: yet another try

Protocol ap3.1: Alice says “| am Alice” and sends her
encrypted secret password to “prove’ it.

AIiCG’S encrypted iy . 17
P addr | password| | M Alice r-;.
e 'si‘“
. r!l-'-'|
’ L
. Alice’ s OK
IP addr

Failure scenario??

Authentication: yet another try

Protocol ap3.1: Alice says “| am Alice” and sends her
encrypted secret password to “prove’ it.

Alice’ s
IP addr

encrypted
password

“I’'m Alice”

Alice’ s
IP addr

Alice’ s
IP addr

encrypted
password

“I’'m Alice”

record
and
playback
still works!

Authentication: yet another try

Goal: avoid playback attack

nonce: number (R) used only once-in-a-lifetime

ap4.0: to prove Alice “live”, Bob sends Alice nonce, R. Alice
must return R, encrypted with shared secret key

“| am Alice” g

K -B(R) Alice is live, and

LR
w* only Alice knows

key to encrypt
nonce, so it must

Failures, drawbacks? be Alice!

Authentication: ap5.0

ap4.0 requires shared symmetric key
" can we authenticate using public key techniques!?
ap5.0: use nonce, public key cryptography

“I am Alice” P
éﬁ?} \[:L' E Bob ComputeS
? / I“"-l_"-| * K_ R — R
<. (R) K A(KA(R)) |
\ and knOWS Only AI|Ce

“send me your public key” = could have the private
<
+ key, that encrypted R

M* SUCh that
K A (5 (R) =

ap>.0: security hole

man (or woman) in the middle attack: Trudy poses as Alice
(to Bob) and as Bob (to Alice)

| am Alice | am Alice

R
K

'T(R) X

% WMCKG)/
K, (R) | *
A >

AN >

Send IC 4k_ey T
K

A [

+
Trudy gets < KT (m)

m = K}(K+ (m))

+
L. - KA(m) sends m to Alice
m=K (K (m)) encrypted with
A A Alice’ s public key

ap>.0: security hole

man (or woman) in the middle attack: Trudy poses as Alice (to
Bob) and as Bob (to Alice)

'I.:'. "I
A

5

o .

T g
A

difficult to detect;

= Bob receives everything that Alice sends, and vice versa.
(e.g., so Bob,Alice can meet one week later and recall
conversation!)

" problem is that Trudy receives all messages as well!

Certification authorities

= certification authority (CA): binds public key to particular
entity, E.

= E (person, router) registers its public key with CA.
 E provides “proof of identity” to CA.

e CA creates certificate binding E to its public key.

* certificate containing E's public key digitally signed by CA — CA
says this is E’ s public key”

Bob’s @& digital +7
public | ™., signature KB
key K (encrypt) >
Bob’ privftﬁ EO_ certificate for
S g K , .
identifying key '~ CA Bob' s public key,

information g signed by CA

Certification authorities

= when Alice wants Bob' s public key:
 gets Bob' s certificate (Bob or elsewhere).

 apply CA’s public key to Bob' s certificate, get Bob' s
public key

T digital @.}gBob’ S
,KB amd Signature -> —_ public
(decrypt) Kg key

Secure e-mail

Alice wants to send confidential e-mail, m, to Bob.
Ks &>

m —» KSO Ks(m) Ks(m) Ks() I
%‘? @ Internet = 4 Zi‘f
+ v
Sﬂ K (Ks) ey L)

4

Alice:
= generates random symmetric private key, K¢
= encrypts message with K. (for efficiency)

= also encrypts K¢ with Bob' s public key
= sends both K¢(m) and K;(K¢) to Bob

Secure e-mail

Alice wants to send confidential e-mail, m, to Bob.
Ks &>

m —» KSO Ks(m) Ks(m) Ks() I
%‘? @ Internet = 0 Jﬁ,i‘f

+
s L) KE(KS) ey el

4

K g Ky @

Bob:
= uses his private key to decrypt and recover K¢
= uses K to decrypt K¢(m) to recover m

Secure e-mail (continued)

Alice wants to provide sender authentication message integrity

Ka :@—? KZ ':

Ka(H(m)) Ka(H(m))

o=
m— H() 1 Ka() 1 - |—>KXw —1*(”‘)__

ﬁ% 57 v

P (b },

5 CT@*EQ? W 3
m |_> H(') H(m)

m

v v

= Alice digitally signs message
" sends both message (in the clear) and digital signature

Secure e-mail (continued)

Alice wants to provide secrecy, sender authentication, message
integrity.

m— H()

5

m

Alice uses three keys: her private key, Bob’ s public key, newly
created symmetric key

Secure Sockets Layer

Application Application
SSL
TCP
TCP
IP P
normal application application with SSL

= SSL provides application programming interface
(API) to applications
= C and Java SSL libraries/classes readily available

Toy SSL: a simple secure channel

" handshake: Alice and Bob use their certificates,
private keys to authenticate each other and
exchange shared secret

= key derivation: Alice and Bob use shared secret to
derive set of keys

" data transfer: data to be transferred is broken up
into series of records

= connection closure: special messages to securely
close connection

Toy: a simple handshake

hello

:r pub\iC key certificate
Kg*(MS) = EMS

MS: master secret
EMS: encrypted master secret

Toy: key derivation

= considered bad to use same key for more than one
cryptographic operation

 use different keys for message authentication code (MAC) and
encryption

= four keys:
e K. = encryption key for data sent from client to server
e M. = MAC key for data sent from client to server
e K, = encryption key for data sent from server to client
M, = MAC key for data sent from server to client

= keys derived from key derivation function (KDF)

e takes master secret and (possibly) some additional random data
and creates the keys

Toy: data records

= why not encrypt data in constant stream as we write it to
TCP?

e where would we put the MAC? If at end, no message integrity
until all data processed.

* e.g., with instant messaging, how can we do integrity check over
all bytes sent before displaying?

= jnstead, break stream in series of records
e each record carries a MAC
* receiver can act on each record as it arrives

" jssue: in record, receiver needs to distinguish MAC from
data

e want to use variable-length records

length data MAC

Toy: sequence humbers

" problem: attacker can capture and replay record
or re-order records

= solution: put sequence number into MAC:
= MAC = MAC(M,, sequence||data)
" note: no sequence number field

" problem: attacker could replay all records
= solution: use nonce

Toy: control information

= problem: truncation attack:
e attacker forges TCP connection close segment

* one or both sides thinks there is less data than there
actually is.

= solution: record types, with one type for closure
e type O for data; type | for closure

= MAC = MAC(M,, sequence||type||data)

length | type data MAC

Toy SSL: summary

hello ‘
certificate, nonce A
‘ ’)
g Ke*(MS) = EMS
O

[IS-'L:I’.:-_I
—>

type 0, seq 1, data
type 0, seq 2, data

type 0, seq 1, 4218

type 0, seq 3, data

R bob.com

encrypted

type 1, seq 4, close

»
—p

ype 1, seq 2, close

‘M

Toy SSL isn’t complete

* how long are fields!?
= which encryption protocols?

" want negotiation?

* allow client and server to support different
encryption algorithms

* allow client and server to choose together specific
algorithm before data transfer

SSL cipher suite

= cipher suite .

P . . common SSL symmetric
e public-key algorithm inh
* symmetric encryption algorithm CIPNETS

« MAC algorithm = DES — Data Encryption
Standard: block

= SSL supports several Clphel" = 3DES - Triple strength: block

suites = RC2 — Rivest Cipher 2: block

" npegotiation: client, server " RC4 —Rivest Cipher 4: stream
agree on cipher suite SSL Public key encryption
* client offers choice = RSA

* server picks one

Real SSL: handshake (1)

Purpose

|. server authentication

2. negotiation: agree on crypto algorithms
3. establish keys

4. client authentication (optional)

Real SSL: handshake (2)

2.

client sends list of algorithms it supports, along with
client nonce

server chooses algorithms from list; sends back:
choice + certificate + server nonce

client verifies certificate, extracts server s public

key, generates pre_master_secret, encrypts with
? .

server s public key, sends to server

client and server independently compute encryption
and MAC keys from pre_master_secret and nonces

client sends a MAC of all the handshake messages
server sends a MAC of all the handshake messages

Real SSL: handshaking (3)

last 2 steps protect handshake from tampering

= client typically offers range of algorithms, some
strong, some weak

" man-in-the middle could delete stronger algorithms
from list

" |ast 2 steps prevent this
* last two messages are encrypted

Real SSL: handshaking (4)

= why two random nonces!

= suppose Trudy sniffs all messages between Alice
& Bob

* next day, Trudy sets up TCP connection with
Bob, sends exact same sequence of records

e Bob (Amazon) thinks Alice made two separate orders
for the same thing

 solution: Bob sends different random nonce for each
connection. This causes encryption keys to be different
on the two days

e Trudy s messages will fail Bob’ s integrity check

SSL record protocol

data
data MAC data MAC
fragment fragment
record encrypted record encrypted
header data and MAC header data and MAC

record header: content type; version; length

MAC: includes sequence number, MAC key M,
fragment: each SSL fragment 2'* bytes (~16 Kbytes)

SSL record format

1 byte 2 bytes 3 bytes
content _
type SSL version length
data
MAC

data and MAC encrypted (symmetric algorithm)

Real S5L —handshake: Cletiolo

. handshake: ServerHe\\o
C O n n e Ctl O n handshake: Certificate
handshake: ServerHe\\oDone
handshake: ClientKeyExchange
Changec,'ph erSpec

everything handshake: Finisheq

henceforth

IS encrypted \ ChangeCipherspec
handshake'. F'm'\shed

application datq
app\ication_data

Alert: warning, close_notify
TCP FIN follows

Key derivation

= client nonce, server nonce, and pre-master secret input
into pseudo random-number generator.
¢ produces master secret

" master secret and new nonces input into another
random-number generator: “key block”
e because of resumption: TBD

= key block sliced and diced:
e client MAC key
e server MAC key
* client encryption key
e server encryption key
 client initialization vector (IV)
 server initialization vector (V)

L5

	Authentication
	Goals for Today
	Authentication
	Authentication
	Authentication: another try
	Authentication: another try
	Authentication: another try
	Authentication: another try
	Authentication: yet another try
	Authentication: yet another try
	Authentication: yet another try
	Authentication: ap5.0
	ap5.0: security hole
	ap5.0: security hole
	Certification authorities
	Certification authorities
	Secure e-mail
	Secure e-mail
	Secure e-mail (continued)
	Secure e-mail (continued)
	Secure Sockets Layer
	Toy SSL: a simple secure channel
	Toy: a simple handshake
	Toy: key derivation
	Toy: data records
	Toy: sequence numbers
	Toy: control information
	Toy SSL: summary
	Toy SSL isn’t complete
	SSL cipher suite
	Real SSL: handshake (1)
	Real SSL: handshake (2)
	Real SSL: handshaking (3)
	Real SSL: handshaking (4)
	SSL record protocol
	SSL record format
	Real SSL�connection
	Key derivation
	L5

