

College of Information Studies

University of Maryland Hornbake Library Building College Park, MD 20742-4345

Point-to-Point

Session 15 INST 346 Technologies, Infrastructure and Architecture

H3 Results

- 1: thread together three types of tasks
 - Open a TCP connection
 - Send HTTP messages over the TCP connection
 - Close the TCP connection
- 2: Get the details right
 - Flags
 - Sequence numbers (for message and for ACK)

Goals for Today

• Link Layer

• Physical Layer

• Multiple access channels

• H4 preview

Link layer: introduction

terminology:

- hosts and routers: nodes
- communication channels that connect adjacent nodes along communication path: links
 - wired links
 - wireless links
 - LANs
- layer-2 packet: frame, encapsulates datagram

data-link layer has responsibility of transferring datagram from one node to physically adjacent node over a link

Link layer: context

- datagram transferred by different link protocols over different links:
 - e.g., Ethernet on first link, frame relay on intermediate links, 802.11 on last link
- each link protocol provides different services
 - e.g., may or may not provide rdt over link

transportation analogy:

- trip from Princeton to Lausanne
 - limo: Princeton to JFK
 - plane: JFK to Geneva
 - train: Geneva to Lausanne
- tourist = datagram
- transport segment = communication link
- transportation mode = link layer protocol
- travel agent = routing algorithm

Link layer services

- framing, link access:
 - encapsulate datagram into frame, adding header, trailer
 - channel access if shared medium
 - "MAC" addresses used in frame headers to identify source, destination
 - different from IP address!
- reliable delivery between adjacent nodes
 - we learned how to do this already (chapter 3)!
 - seldom used on low bit-error link (fiber, some twisted pair)
 - wireless links: high error rates
 - Q: why both link-level and end-end reliability?

Link layer services (more)

- flow control:
 - pacing between adjacent sending and receiving nodes
- error detection:
 - errors caused by signal attenuation, noise.
 - receiver detects presence of errors:
 - signals sender for retransmission or drops frame
- error correction:
 - receiver identifies and corrects bit error(s) without resorting to retransmission
- half-duplex and full-duplex
 - with half duplex, nodes at both ends of link can transmit, but not at same time

Where is the link layer implemented?

- in each and every host
- link layer implemented in "adaptor" (aka network interface card NIC) or on a chip
 - Ethernet card, 802.11 card; Ethernet chipset
 - implements link, physical layer
- attaches into host's system buses
- combination of hardware, software, firmware

Adaptors communicating

- sending side:
 - encapsulates datagram in frame
 - adds error checking bits, rdt, flow control, etc.

- receiving side
 - looks for errors, rdt, flow control, etc.
 - extracts datagram, passes to upper layer at receiving side

Links

two types of "links":

point-to-point

- Internet backbone
- ADSL

broadcast (shared "medium")

- Ethernet (wired)
- 802.11 "wireless LAN"

Physical media: wired

twisted "pair" (TP)

- two (or more) insulated copper wires
 - Category 5: 100 Mbps, 1 Gbps Ethernet
 - Category 6: 10Gbps

coaxial cable:

- two concentric copper conductors
- broadband:
 - Used to send multiple channels on cable TV

Digital subscriber line (DSL)

use existing telephone line to central office DSL access multiplexer

- data over DSL phone line goes to Internet
- voice over DSL phone line goes to telephone net
- < 2.5 Mbps upstream transmission rate (typically < 1 Mbps)</p>
- < 24 Mbps downstream transmission rate (typically < 10 Mbps)</p>

Cable access network

- multiple 40Mbps downstream (broadcast) channels
 - single CMTS transmits into channels
- multiple 30 Mbps upstream channels
 - multiple access: all users contend for certain upstream channel time slots (others assigned)

Physical media: Fiber optics

fiber optic cable:

- glass fiber carrying light pulses, each pulse a bit
- high-speed operation:
 - high-speed point-to-point transmission (e.g., 10' s-100' s Gbps transmission rate)
- Iow error rate:
 - repeaters spaced far apart
 - immune to electromagnetic noise

"Submarine" Fiber Optic Cables

Physical media: radio

- signal carried in electromagnetic spectrum
- no physical wire
- propagation environment effects:
 - reflection
 - obstruction by objects
 - interference

radio link types:

- terrestrial microwave
 - e.g. up to 45 Mbps channels
- LAN (e.g., WiFi) WiFi
 54 Mbps
 - 54 Mbps
- wide-area (e.g., cellular)
 - 4G cellular: ~ 10 Mbps
- satellite
 - Up to 45Mbps channels (or multiple smaller channels)
 - Two types
 - 270 msec end-end delay for geosynchronous
 - Low-earth orbit

Error detection

EDC= Error Detection and Correction bits (redundancy)

- D = Data protected by error checking, may include header fields
- Error detection not 100% reliable!
 - protocol may miss some errors, but rarely
 - larger EDC field yields better detection and correction

Cyclic redundancy check

- more powerful error-detection coding
- view data bits, D, as a binary number
- choose r+l bit pattern (generator), G
- goal: choose r CRC bits, R, such that
 - <D,R> exactly divisible by G (modulo 2)
 - receiver knows G, divides <D,R> by G. If non-zero remainder: error detected!
 - can detect all burst errors less than r+1 bits
- widely used in practice (Ethernet, 802.11 WiFi)

$$\longleftarrow d \text{ bits } \longrightarrow \frown r \text{ bits } \longrightarrow bit$$

$$D: \text{ data bits to be sent } R: CRC \text{ bits } pattern$$

Parity checking

single bit parity:

 detect single bit errors

two-dimensional bit parity:

detect and correct single bit errors

* Check out the online interactive exercises for more examples: http://gaia.cs.umass.edu/kurose_ross/interactive/

Turbo Codes: Forward Error Correction

Ethernet

"dominant" wired LAN technology:

- single chip, multiple speeds (e.g., Broadcom BCM5761)
- first widely used LAN technology
- simpler, cheap
- kept up with speed race: 10 Mbps 10 Gbps

Metcalfe's Ethernet sketch

Multiple access protocols

- single shared broadcast channel
- two or more simultaneous transmissions by nodes: interference
 - collision if node receives two or more signals at the same time

multiple access protocol

- distributed algorithm that determines how nodes share channel, i.e., determine when node can transmit
- communication about channel sharing must use channel itself!
 - no out-of-band channel for coordination

An ideal multiple access protocol

given: broadcast channel of rate R bps desiderata:

- I. when one node wants to transmit, it can send at rate R.
- 2. when M nodes want to transmit, each can send at average rate R/M
- 3. fully decentralized:
 - no special node to coordinate transmissions
 - no synchronization of clocks, slots
- 4. simple

Random access protocols

- when node has packet to send
 - transmit at full channel data rate R.
 - no *a priori* coordination among nodes
- two or more transmitting nodes \rightarrow "collision",
- random access MAC protocol specifies:
 - how to detect collisions
 - how to recover from collisions (e.g., via delayed retransmissions)
- examples of random access MAC protocols:
 - slotted ALOHA
 - ALOHA
 - CSMA, CSMA/CD, CSMA/CA

CSMA (carrier sense multiple access)

- **CSMA:** listen before transmit:
- if channel sensed idle: transmit entire frame
- if channel sensed busy, defer transmission

human analogy: don't interrupt others!

CSMA collisions

- collisions can still occur: propagation delay means two nodes may not hear each other's transmission
- collision: entire packet transmission time wasted
 - distance & propagation delay play role in in determining collision probability

time

CSMA/CD (collision detection)

CSMA/CD: carrier sensing, deferral as in CSMA

- collisions detected within short time
- colliding transmissions aborted, reducing channel wastage
- collision detection:
 - easy in wired LANs: measure signal strengths, compare transmitted, received signals
 - difficult in wireless LANs: received signal strength overwhelmed by local transmission strength
- human analogy: the polite conversationalist

CSMA/CD (collision detection)

Ethernet CSMA/CD algorithm

- I. NIC receives datagram from network layer, creates frame
- 2. If NIC senses channel idle, starts frame transmission. If NIC senses channel busy, waits until channel idle, then transmits.
- 3. If NIC transmits entire frame without detecting another transmission, NIC is done with frame !

- 4. If NIC detects another transmission while transmitting, aborts and sends jam signal
- 5. After aborting, NIC enters binary (exponential) backoff:
 - after *m*th collision, NIC chooses *K* at random from {0, 1, 2, ..., 2^m-1}. NIC waits K⁵12 bit times, returns to Step 2
 - longer backoff interval with more collisions

CSMA/CD efficiency

- T_{prop} = max prop delay between 2 nodes in LAN
- t_{trans} = time to transmit max-size frame

$$efficiency = \frac{1}{1 + 5t_{prop}/t_{trans}}$$

- efficiency goes to I
 - as t_{prop} goes to 0
 - as t_{trans} goes to infinity
- this typically works out to about 35%

"Taking turns" MAC protocols

polling:

- master node "invites" slave nodes to transmit in turn
- typically used with "dumb" slave devices
- concerns:
 - polling overhead
 - latency
 - single point of failure (master)

"Taking turns" MAC protocols

token passing:

- control token passed from one node to next sequentially.
- token message
- concerns:
 - token overhead
 - latency
 - single point of failure (token)

Ethernet: physical topology

- bus: popular through mid 90s
 - all nodes in same collision domain (can collide with each other)
- star: prevails today
 - active switch in center
 - each "spoke" runs a (separate) Ethernet protocol (nodes do not collide with each other)

Switches vs. routers

both are store-and-forward:

- routers: network-layer devices (examine networklayer headers)
- switches: link-layer devices (examine link-layer headers)

both have forwarding tables:

- routers: compute tables using routing algorithms, IP addresses
- switches: learn forwarding table using flooding, learning, MAC addresses

H4 Preview

Before You Go

On a sheet of paper, answer the following (ungraded) question (no names, please):

What was the muddiest point in today's class?