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Your Suggestions
• State goals explicitly
• More examples

– Animations, videos, demos
– In-class activities
– Draw more on the board
– Analogies from everyday life

• Discuss every lab and homework 
– Both in advance and afterwards

• Provide links to supplemental sources



Your Other Suggestions

• Assign more homework (!)

• Talk about every slide

• Wake you up if you fall asleep



Goals for Today

• Exam results

• Getting IPv4 to work
– DHCP, NAT, Fragmentation

• IPv6

• Getahead: Routing



Network-layer functions

 forwarding: move packets 
from router’s input to 
appropriate router output

data plane

control plane

Two approaches to structuring network control plane:
 per-router control (traditional)
 logically centralized control (software defined networking)

Recall: two network-layer functions:

 routing: determine route 
taken by packets from source 
to destination



Router architecture overview

high-seed 
switching

fabric

routing 
processor

router input ports router output ports

forwarding data plane  
(hardware) operttes in 

nanosecond 
timeframe

routing, management
control plane (software)
operates in millisecond 

time frame

 high-level view of generic router architecture:



Switching via a bus

 datagram from input port memory
to output port memory via a 
shared bus

 bus contention: switching speed 
limited by bus bandwidth

 32 Gbps bus, Cisco 5600: sufficient 
speed for access and enterprise 
routers

bus



IP addressing

 IP address: 32-bit 
identifier for host, router 
interface

 interface: connection 
between host/router and 
physical link
• router’s typically have 

multiple interfaces
• host typically has one or 

two interfaces (e.g., wired 
Ethernet, wireless 802.11)

 IP addresses associated 
with each interface

223.1.1.1

223.1.1.2

223.1.1.3

223.1.1.4 223.1.2.9

223.1.2.2

223.1.2.1

223.1.3.2223.1.3.1

223.1.3.27

223.1.1.1 = 11011111 00000001 00000001 00000001

223 1 11



Longest prefix matching

Destination Address Range

11001000 00010111 00010*** *********

11001000 00010111 00011000 *********

11001000 00010111 00011*** *********

otherwise

DA: 11001000  00010111  00011000  10101010

examples:
DA: 11001000  00010111  00010110  10100001 which interface?

which interface?

when looking for forwarding table entry for given 
destination address, use longest address prefix that 
matches destination address.

longest prefix matching

Link interface

0

1

2

3



DHCP: Dynamic Host Configuration Protocol

goal: allow host to dynamically obtain its IP address from network 
server when it joins network
• can renew its lease on address in use
• allows reuse of addresses (only hold address while 

connected/“on”)
• support for mobile users who want to join network (more 

shortly)
DHCP overview:

• host broadcasts “DHCP discover” msg [optional]
• DHCP server responds with “DHCP offer” msg [optional]
• host requests IP address: “DHCP request” msg
• DHCP server sends address: “DHCP ack” msg 



DHCP client-server scenario

223.1.1.0/24

223.1.2.0/24

223.1.3.0/24

223.1.1.1

223.1.1.3

223.1.1.4 223.1.2.9

223.1.3.2223.1.3.1

223.1.1.2

223.1.3.27
223.1.2.2

223.1.2.1

DHCP
server

arriving DHCP
client needs 
address in this
network



DHCP server: 223.1.2.5 arriving
client

DHCP discover

src : 0.0.0.0, 68     
dest.: 255.255.255.255,67

yiaddr:    0.0.0.0
transaction ID: 654

DHCP offer
src: 223.1.2.5, 67      

dest:  255.255.255.255, 68
yiaddrr: 223.1.2.4

transaction ID: 654
lifetime: 3600 secs

DHCP request
src:  0.0.0.0, 68     

dest::  255.255.255.255, 67
yiaddrr: 223.1.2.4

transaction ID: 655
lifetime: 3600 secs

DHCP ACK
src: 223.1.2.5, 67      

dest:  255.255.255.255, 68
yiaddrr: 223.1.2.4

transaction ID: 655
lifetime: 3600 secs

DHCP client-server scenario

Broadcast: is there a 
DHCP server out there?

Broadcast: I’m a DHCP 
server! Here’s an IP 
address you can use 

Broadcast: OK.  I’ll take 
that IP address!

Broadcast: OK.  You’ve 
got that IP address!



DHCP: more than IP addresses

DHCP can return more than just allocated IP 
address on subnet:
• address of first-hop router for client
• name and IP address of DNS sever
• network mask (indicating network versus host portion 

of address)



 connecting laptop needs 
its IP address, addr of 
first-hop router, addr of 
DNS server: use DHCP

router with DHCP 
server built into 
router

 DHCP request encapsulated 
in UDP, encapsulated in IP, 
encapsulated in 802.1 
Ethernet
 Ethernet frame broadcast 

(dest: FFFFFFFFFFFF) on LAN, 
received at router running 
DHCP server

 Ethernet demuxed to IP 
demuxed, UDP demuxed to 
DHCP 

168.1.1.1

DHCP
UDP

IP
Eth
Phy

DHCP

DHCP

DHCP

DHCP

DHCP

DHCP
UDP

IP
Eth
Phy

DHCP

DHCP

DHCP

DHCPDHCP

DHCP: example



 DCP server formulates 
DHCP ACK containing 
client’s IP address, IP 
address of first-hop 
router for client, name & 
IP address of DNS server
 encapsulation of DHCP 

server, frame forwarded 
to client, demuxing up to 
DHCP at client

DHCP: example

router with DHCP 
server built into 
router

DHCP

DHCP

DHCP

DHCP

DHCP
UDP

IP
Eth
Phy

DHCP

DHCP
UDP

IP
Eth
Phy

DHCP

DHCP

DHCP

DHCP

 client now knows its IP 
address, name and IP 
address of DSN server, IP 
address of its first-hop 
router



DHCP: Wireshark 
output (home LAN)

Message type: Boot Reply (2)
Hardware type: Ethernet
Hardware address length: 6
Hops: 0
Transaction ID: 0x6b3a11b7
Seconds elapsed: 0
Bootp flags: 0x0000 (Unicast)
Client IP address: 192.168.1.101 (192.168.1.101)
Your (client) IP address: 0.0.0.0 (0.0.0.0)
Next server IP address: 192.168.1.1 (192.168.1.1)
Relay agent IP address: 0.0.0.0 (0.0.0.0)
Client MAC address: Wistron_23:68:8a (00:16:d3:23:68:8a)
Server host name not given
Boot file name not given
Magic cookie: (OK)
Option: (t=53,l=1) DHCP Message Type = DHCP ACK
Option: (t=54,l=4) Server Identifier = 192.168.1.1
Option: (t=1,l=4) Subnet Mask = 255.255.255.0
Option: (t=3,l=4) Router = 192.168.1.1
Option: (6) Domain Name Server

Length: 12; Value: 445747E2445749F244574092; 
IP Address: 68.87.71.226;
IP Address: 68.87.73.242; 
IP Address: 68.87.64.146

Option: (t=15,l=20) Domain Name = "hsd1.ma.comcast.net."

reply

Message type: Boot Request (1)
Hardware type: Ethernet
Hardware address length: 6
Hops: 0
Transaction ID: 0x6b3a11b7
Seconds elapsed: 0
Bootp flags: 0x0000 (Unicast)
Client IP address: 0.0.0.0 (0.0.0.0)
Your (client) IP address: 0.0.0.0 (0.0.0.0)
Next server IP address: 0.0.0.0 (0.0.0.0)
Relay agent IP address: 0.0.0.0 (0.0.0.0)
Client MAC address: Wistron_23:68:8a (00:16:d3:23:68:8a)
Server host name not given
Boot file name not given
Magic cookie: (OK)
Option: (t=53,l=1) DHCP Message Type = DHCP Request
Option: (61) Client identifier

Length: 7; Value: 010016D323688A; 
Hardware type: Ethernet
Client MAC address: Wistron_23:68:8a (00:16:d3:23:68:8a)

Option: (t=50,l=4) Requested IP Address = 192.168.1.101
Option: (t=12,l=5) Host Name = "nomad"
Option: (55) Parameter Request List

Length: 11; Value: 010F03062C2E2F1F21F92B
1 = Subnet Mask; 15 = Domain Name
3 = Router; 6 = Domain Name Server
44 = NetBIOS over TCP/IP Name Server
……

request



NAT: network address translation

10.0.0.1

10.0.0.2

10.0.0.3

10.0.0.4

138.76.29.7

local network
(e.g., home network)

10.0.0/24

rest of
Internet

datagrams with source or 
destination in this network
have 10.0.0/24 address for 
source, destination (as usual)

all datagrams leaving local
network have same single 

source NAT IP address: 
138.76.29.7,different source 

port numbers



motivation: local network uses just one IP address as far 
as outside world is concerned:
 range of addresses not needed from ISP:  just one 

IP address for all devices
 can change addresses of devices in local network 

without notifying outside world
 can change ISP without changing addresses of 

devices in local network
 devices inside local net not explicitly addressable, 

visible by outside world (a security plus)

NAT: network address translation



implementation: NAT router must:

 outgoing datagrams: replace (source IP address, port #) of 
every outgoing datagram to (NAT IP address, new port #)

. . . remote clients/servers will respond using (NAT IP 
address, new port #) as destination addr

 remember (in NAT translation table) every (source IP address, 
port #)  to (NAT IP address, new port #) translation pair

 incoming datagrams: replace (NAT IP address, new port #) in 
dest fields of every incoming datagram with corresponding 
(source IP address, port #) stored in NAT table

NAT: network address translation



10.0.0.1

10.0.0.2

10.0.0.3

S: 10.0.0.1, 3345
D: 128.119.40.186, 80

1
10.0.0.4

138.76.29.7

1: host 10.0.0.1 
sends datagram to 
128.119.40.186, 80

NAT translation table
WAN side addr        LAN side addr
138.76.29.7, 5001   10.0.0.1, 3345
……                                         ……

S: 128.119.40.186, 80 
D: 10.0.0.1, 3345 4

S: 138.76.29.7, 5001
D: 128.119.40.186, 802

2: NAT router
changes datagram
source addr from
10.0.0.1, 3345 to
138.76.29.7, 5001,
updates table

S: 128.119.40.186, 80 
D: 138.76.29.7, 5001 3

3: reply arrives
dest. address:
138.76.29.7, 5001

4: NAT router
changes datagram
dest addr from
138.76.29.7, 5001 to 10.0.0.1, 3345 

NAT: network address translation

* Check out the online interactive exercises for more 
examples: http://gaia.cs.umass.edu/kurose_ross/interactive/



 16-bit port-number field: 
• 60,000 simultaneous connections with a single 

LAN-side address!
 NAT is controversial:

• routers should only process up to layer 3
• address shortage should be solved by IPv6
• violates end-to-end argument

• NAT possibility must be taken into account by app 
designers, e.g., P2P applications

• NAT traversal: what if client wants to connect 
to server behind NAT?

NAT: network address translation



IP fragmentation, reassembly

 network links have MTU 
(max.transfer size) -
largest possible link-level 
frame
• different link types, 

different MTUs 
 large IP datagram divided 

(“fragmented”) within net
• one datagram becomes 

several datagrams
• “reassembled” only at 

final destination
• IP header bits used to 

identify, order related 
fragments

fragmentation:
in: one large datagram
out: 3 smaller datagrams

reassembly

…

…



ID
=x

offset
=0

fragflag
=0

length
=4000

ID
=x

offset
=0

fragflag
=1

length
=1500

ID
=x

offset
=185

fragflag
=1

length
=1500

ID
=x

offset
=370

fragflag
=0

length
=1040

one large datagram becomes
several smaller datagrams

example:
 4000 byte datagram
 MTU = 1500 bytes

1480 bytes in 
data field

offset =
1480/8 

IP fragmentation, reassembly



ver length

32 bits

data 
(variable length,
typically a TCP 

or UDP segment)

16-bit identifier
header

checksum
time to

live

32 bit source IP address

head.
len

type of
service

flgs fragment
offset

upper
layer

32 bit destination IP address

options (if any)

IP datagram format
IP protocol version

number
header length

(bytes)

upper layer protocol
to deliver payload to

total datagram
length (bytes)

“type” of data 
for
fragmentation/
reassemblymax number

remaining hops
(decremented at 

each router)

e.g. timestamp,
record route
taken, specify
list of routers 
to visit.

how much overhead?
 20 bytes of TCP
 20 bytes of IP
 = 40 bytes + app 

layer overhead



IPv6: motivation
 initial motivation: 32-bit address space soon to be 

completely allocated.  
 additional motivation:

• header format helps speed processing/forwarding
• header changes to facilitate QoS 

IPv6 datagram format: 
• fixed-length 40 byte header
• no fragmentation allowed



IPv6 datagram format

priority: identify priority among datagrams in flow
flow Label: identify datagrams in same “flow.”

(concept of“flow” not well defined).
next header: identify upper layer protocol for data

data

destination address
(128 bits)

source address
(128 bits)

payload len next hdr hop limit
flow labelpriver

32 bits



Other changes from IPv4

 checksum: removed entirely to reduce processing 
time at each hop

 options: allowed, but outside of header, indicated 
by “Next Header” field

 ICMPv6: new version of ICMP
• additional message types, e.g. “Packet Too Big”
• multicast group management functions



Transition from IPv4 to IPv6
 not all routers can be upgraded simultaneously

• no “flag days”
• how will network operate with mixed IPv4 and 

IPv6 routers? 
 tunneling: IPv6 datagram carried as payload in IPv4 

datagram among IPv4 routers

IPv4 source, dest addr 
IPv4 header fields 

IPv4 datagram
IPv6 datagram

IPv4 payload 

UDP/TCP payload
IPv6 source dest addr

IPv6 header fields



Tunneling

physical view:
IPv4 IPv4

A B

IPv6 IPv6

E

IPv6 IPv6

FC D

logical view:

IPv4 tunnel 
connecting IPv6 routers E

IPv6 IPv6

FA B

IPv6 IPv6



flow: X
src: A
dest: F

data

A-to-B:
IPv6

Flow: X
Src: A
Dest: F

data

src:B
dest: E

B-to-C:
IPv6 inside

IPv4

E-to-F:
IPv6

flow: X
src: A
dest: F

data

B-to-C:
IPv6 inside

IPv4

Flow: X
Src: A
Dest: F

data

src:B
dest: E

physical view:
A B

IPv6 IPv6

E

IPv6 IPv6

FC D

logical view:

IPv4 tunnel 
connecting IPv6 routers E

IPv6 IPv6

FA B

IPv6 IPv6

Tunneling

IPv4 IPv4



IPv6: adoption

 Google: 8% of clients access services via IPv6
 NIST: 1/3 of all US government domains are IPv6 

capable

 Long (long!) time for deployment, use
•20 years and counting!
•think of application-level changes in last 20 years: WWW, 
Facebook, streaming media, Skype, …
•Why?



Per-router control plane

Routing
Algorithm

Individual routing algorithm components in each and every 
router interact with each other in control plane to compute 
forwarding tables

data
plane

control
plane



data
plane

control
plane

Logically centralized control plane
A distinct (typically remote) controller interacts with local 
control agents (CAs) in routers to compute forwarding tables

Remote Controller

CA

CA CA CA CA



5.1 introduction
5.2 routing protocols
 link state
 distance vector
5.3 intra-AS routing in the 

Internet: OSPF
5.4 routing among the ISPs: 

BGP

5.5 The SDN control plane
5.6 ICMP: The Internet 

Control Message 
Protocol 

5.7 Network management 
and SNMP

Chapter 5: outline



Routing protocols

Routing protocol goal: determine “good” paths 
(equivalently, routes), from sending hosts to 
receiving host, through network of routers
 path: sequence of routers packets will traverse 

in going from given initial source host to given 
final destination host

 “good”: least “cost”, “fastest”, “least 
congested”

 routing: a “top-10” networking challenge!



u

yx

wv

z
2

2
1

3

1

1

2

5
3

5

graph: G = (N,E)

N = set of routers = { u, v, w, x, y, z }

E = set of links ={ (u,v), (u,x), (v,x), (v,w), (x,w), (x,y), (w,y), (w,z), (y,z) }

Graph abstraction of the network

aside: graph abstraction is useful in other network contexts, e.g., 
P2P, where N is set of peers and E is set of TCP connections



Graph abstraction: costs

u

yx

wv

z
2

2
1

3

1

1

2

5
3

5 c(x,x’) = cost of link (x,x’)
e.g., c(w,z) = 5

cost could always be 1, or 
inversely related to bandwidth,
or inversely related to 
congestion

cost of path (x1, x2, x3,…, xp) = c(x1,x2) + c(x2,x3) + … + c(xp-1,xp)  

key question: what is the least-cost path between u and z ?
routing algorithm: algorithm that finds that least cost path



Routing algorithm classification

Q: global or decentralized 
information?

global:
 all routers have complete 

topology, link cost info
 “link state” algorithms
decentralized: 
 router knows physically-

connected neighbors, link 
costs to neighbors

 iterative process of 
computation, exchange of 
info with neighbors

 “distance vector” algorithms

Q: static or dynamic?

static:
 routes change slowly over 

time
dynamic: 
 routes change more 

quickly
• periodic update
• in response to link 

cost changes



Distance vector algorithm 

 Dx(y) = estimate of least cost from x to y
• x maintains  distance vector Dx = [Dx(y): y є N ]

 node x:
• knows cost to each neighbor v: c(x,v)
• maintains its neighbors’ distance vectors. For 

each neighbor v, x maintains 
Dv = [Dv(y): y є N ]



key idea:
 from time-to-time, each node sends its own 

distance vector estimate to neighbors
 when x receives new DV estimate from neighbor, 

it updates its own DV using B-F equation:

Dx(y) ← minv{c(x,v) + Dv(y)}  for each node y ∊ N

 under minor, natural conditions, the estimate Dx(y) 
converge to the actual least cost dx(y)

Distance vector algorithm 



iterative, asynchronous:
each local iteration 
caused by: 

 local link cost change 
 DV update message from 

neighbor
distributed:
 each node notifies 

neighbors only when its 
DV changes
• neighbors then notify their 

neighbors if necessary

wait for (change in local link 
cost or msg from neighbor)

recompute estimates

if DV to any dest has 
changed, notify neighbors 

each node:

Distance vector algorithm 
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Distance vector: link cost changes

link cost changes:
 node detects local link cost change 
 updates routing info, recalculates 

distance vector
 if DV changes, notify neighbors

“good
news 
travels
fast”

x z
14

50

y
1

t0 : y detects link-cost change, updates its DV, informs its 
neighbors.

t1 : z receives update from y, updates its table, computes new 
least cost to x , sends its neighbors its DV.

t2 : y receives z’s update, updates its distance table.  y’s least costs 
do not change, so y does not send a message to z. 

* Check out the online interactive exercises for more 
examples: http://gaia.cs.umass.edu/kurose_ross/interactive/



Distance vector: link cost changes

link cost changes:
 node detects local link cost change 
 bad news travels slow - “count to 

infinity” problem!
 44 iterations before algorithm 

stabilizes: see text

x z
14

50

y
60

poisoned reverse:
 If Z routes through Y to get to X :

 Z tells Y its (Z’s) distance to X is infinite (so Y won’t route 
to X via Z)

 will this completely solve count to infinity problem?



Before You Go

On a sheet of paper, answer the following 
(ungraded) question (no names, please):

What one or two possible 
improvements to the way the class 
is being taught would make the 
most difference?
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